

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Schottky Diode Modules 130 Amperes / 1200 Volts

Dual SiC Diode Module 130 Amperes / 1200 Volts

Description:

Powerex Silicon Carbide Dual Schottky Diode Modules are designed for use in applications requiring extremely fast switching. The modules are isolated for easy mounting with other components on common heatsinks.

Features:

- ☐ Junction Temperature: 175°C
 ☐ Extremely Fast Switching
 ☐ Zero Reverse Recovery
 ☐ Zero Forward Recovery
 ☐ High Frequency Operation
 ☐ Positive Temperature Coefficient on On-State Voltage (V_F)
 ☐ RoHS Compliant
 ☐ Isolated Mounting
 ☐ Metal Baseplate
 ☐ Low Thermal Impedance

Applications:

☐ 3500V Isolation Voltage☐ Aluminum Nitride Isolation

- ☐ Energy Saving Power Systems☐ High Frequency Type Power Systems☐ High Temperature Power Systems
- ☐ Welding Converters
- ☐ Motor Control

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272

Silicon Carbide Schottky Diode Modules 130 Amperes / 1200 Volts

Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	QR_1213SA1	Units
Repetitive Peak Reverse Blocking Voltage	V_{RRM}	1200	Volts
Non-Repetitive Peak Reverse Blocking Voltage	V_{RSM}	1200	Volts
DC Current, TC = 80°C (Resistive Load) *2	$I_{F(DC)}$	130	Amperes
Non-Repetitive Forward Surge Current	I _{FSM}	260	Amperes
l²t for Fusing for One Cycle (t = 8.3mS, 100% VRRM Reapplied)	I²t	TBD	Amperes
Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1	P_D	319	Watts
Maximum Junction Temperature	T_{Jmax}	175	°C
Operating Junction Temperature, Continuous operation (under switching)	T _{j op}	-40 to 150	°C
Maximum Case Temperature*1	T _{c max}	125	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Mounting Torque, M6 Mounting Screws		5	Nm
Terminal Torque, M6 Terminal Screws		3.5	Nm
Module Weight (Typical)		180	Grams
Isolation Voltage	V _{ISO}	3500	Volts

^{*1} Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips.
*2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating.

DC Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Reverse Leakage Current	I _{RRM}	Rated V _{RRM}	-	-	1.2	mA
Forward Voltage (Chip)	V _{FM}	$I_F=130A, T_J=25^{\circ}C$	=	1.53	-	Volts
Tolward Voltage (Chip)	V FM	I _F =130A, T _J = 125°C	-	2.05	-	Volts
Total Capacitive Charge	Q _C	V _R =600V	=	TBD	=	nC
Total Capacitance	С _	V _R =400V, f = 1MHz	=	TBD - pF		
тотан Сараспансе	· _	$V_R=800V$, $f=1MHz$	-	TBD	-	pF
Stray Inductance	Ls	P-N	-	10	-	nΗ

Thermal Resistance Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	$R_{\text{th(j-c)}}$	Per Diode	-	-	0.47	°C/W
Contact Thermal Resistance	R _{th(c-s)}	Per Module, Thermal Grease Applied	-	0.07	-	°C/W

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Schottky Diode Modules 130 Amperes / 1200 Volts

Dimensions	Millimeters	Dimensions	Millimeters
А	94	J	12
В	80	K	M6
С	30	L	7.5
D	34	M	25.4
E	40	N	4
F	23	Р	19
G	17	Q	6.5 Dia.
Н	13		