

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Single SiC MOSFET Module 54 Amperes / 10kV

High Voltage Silicon Carbide MOSFET Module 54 Amperes / 10kV / 100 mΩ

Description:

Powerex HV Silicon Carbide MOSFET Modules are designed for use in high voltage applications. Each module consists of one MOSFET Silicon Carbide Transistor. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Feat	tur	es:
------	-----	-----

☐ Junction Temperature: 175°C
\square Low R _{DS(on)}
☐ High Speed Switching
\square Temperature-Independent Switching
☐ Low Stray Inductance (29nH)
☐ 15kV Partial Discharge
☐ 20kV Isolation Voltage
☐ Aluminum Nitride Isolation
☐ Copper Baseplate

Applications:

☐ Grid tied Solar Inverters
☐ Medium Voltage Motor Drives
☐ Power Distribution in Data Centers
☐ Power Distribution in Factories
☐ Railway Application

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272

High Voltage Silicon Carbide **MOSFET Module** 54 Amperes / $10kV / 100 m\Omega$

Absolute Maximum Ratings, T_j = 25°C unless otherwise specified

Characteristics	Symbol	QJSB006SB1	Units
Drain-Source Voltage (G-S Short)	$V_{ t DSS}$	10000	Volts
Gate-Source Voltage, DC, D-S short	V_{GSmax}	-9 / +19	Volts
Drain Current (Continuous) at T _C =61°C*1	I _D	54	Amperes
Drain Current (Pulse, Repetitive)*2 , T _{vj} =150°C*3	I _{D(pulse)}	108	Amperes
Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1	P_D	750	Watts
Maximum Junction Temperature	T_{Jmax}	175	°C
Operating Junction Temperature, Continuous operation (under switching)	T _{j op}	-40 to 150	°C
Maximum Case Temperature*1	T _{c max}	125	°C
Storage Temperature	T_{stg}	-40 to 125	°C
Mounting Torque, M6 Mounting Screws	_	5.5	N-m
Terminal Connection Torque, M8 Terminal Screws	_	10	N-m
Module Weight (Typical)	_	1600	Grams
Isolation Voltage	V _{ISO}	20	kVolts
Partial Discharge Extinction Voltage, RMS, Sinusoidal, f = 60Hz, Q _{PD} ≤ 10pC	V _e	15	kVolts

^{*1} Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips.
*2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating.
*3 Junction temperature (T_v) should not increase beyond T_{J (MAX)} rating.

DC Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain Source Leakage Current	I _{DSS}	V_{DS} =10kV, V_{GS} =0V	-	-	1.0	mA
Gate Source Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =15V	-	=	30	nA
Recommended Gate Source Voltage	V_{GS}		-	-5/+15	-	Volts
Gate Source Threshold Voltage	V _{GS(th)}	V_{DS} =10V, I_{D} =3mA	2.5	3.2	-	Volts
Drain Source On-Resistance (chip)	R _{DS(on)}	V _{GS} =15V I _D =45A	-	100	116.8	mΩ
	_	T _J =150°C	-	158.4	-	mΩ
Internal Gate Source Series Resistance	R _g	Per Switch	-	2.4	-	Ω
Stray Inductance	Ls	Between Terminal D1,D2	-	29	-	nΗ
		and Terminal S1,S2				

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

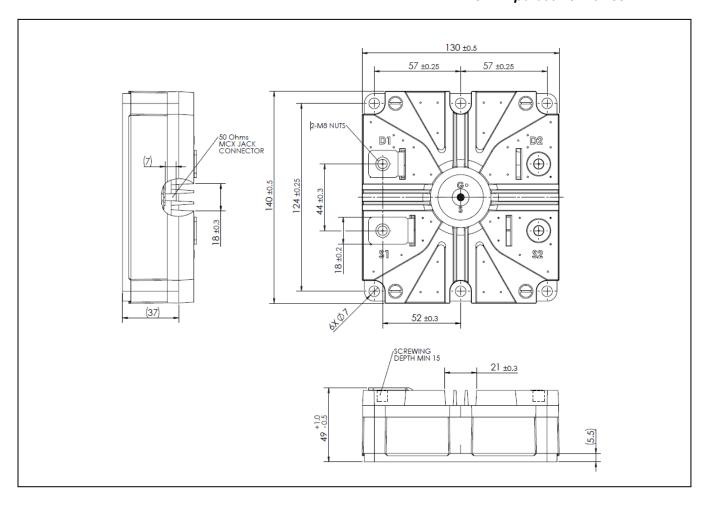
High Voltage Silicon Carbide MOSFET Module 54 Amperes / 10kV / 100 mΩ

Dynamic Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	C _{ISS}		-	TBD	-	nF
Output Capacitance	Coss	$V_{GS}=0V, V_{DS}=1000V$	-	TBD	-	nF
Reverse Transfer Capacitance	C_{RSS}	<u>-</u>	-	TBD	-	nF
Turn-On Delay Time	$t_{D(on)}$	V _{DD} =6kV, V _{GS} = -5/+15V	-	TBD	-	ns
Rise Time	t _R	$I_D=90A$, $R_G=1\Omega$, $T_J=150$ °C	-	TBD	-	ns
Turn-Off Delay Time	$t_{D(off)}$	Inductive Load, per Pulse	_	TBD	-	ns
Fall Time	t _F		-	TBD	-	ns
Turn-On Energy	E _{on}	V_{DD} =6kV, V_{GS} = ±15V	-	TBD	-	mJ
Turn-Off Energy	E _{off}	I_D =90A, R_G =6.7 Ω , T_J =150°C Inductive Load, per Pulse	-	TBD	-	mJ
Total Gate Charge	Q_G	V_{DD} =6kV, V_{GS} =-5/+15V I_{D} =90A, T_{j} =25°C	-	TBD	-	nC

Body Diode, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	V_{SD}	V_{GS} =-15 VI_{S} =90 A	-	8.0	-	V
		T _J =150°C	-	11.0	-	V


Thermal Resistance Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per MOSFET	-	-	0.06	°C/W
Contact Thermal Resistance	$R_{\text{th(c-s)}}$	Per Module, Thermal Grease Applied $\lambda=1$ W/(m-K), $D_{(c-s)}=80\mu m$	-	0.007	-	°C/W

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

High Voltage Silicon Carbide MOSFET Module 54 Amperes / $10kV / 100 \text{ m}\Omega$

