Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Silicon Carbide Six-Pack MOSFET Module 100 Amperes / 1700 Volts / 14.5 mΩ # Six-Pack (Three Phase) SiC MOSFET Module 100 Amperes / 1700 Volts ## **Description:** Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of six MOSFET Silicon Carbide Transistors with each transistor having a reverse connected fast recovery freewheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management. #### Features: ☐ Junction Temperature: 175°C ☐ Industry Leading R_{DS(on)} ☐ High Speed Switching ☐ Low Switching Losses ☐ Low Capacitance ☐ Low Drive Requirement ☐ High Power Density ☐ Zero Reverse Recovery from Diode ☐ Isolated Baseplate ☐ Aluminum Nitride Isolation #### **Applications:** ☐ Energy Saving Power Systems☐ High Frequency Type Power Systems☐ High Temperature Power Systems Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 Silicon Carbide Six-Pack MOSFET Module 100 Amperes / 1700 Volts / 14.5 m Ω # Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified | Characteristics | Symbol | QJE1710SA1 | Units | |---|-----------------------|------------|---------| | Drain-Source Voltage (G-S Short) | $V_{ t DSS}$ | 1200 | Volts | | Gate-Source Voltage, DC, D-S short | V _{GSS} | ±20 | Volts | | Drain Current (Continuous) at T _C =61°C*1 | I _D | 100 | Amperes | | Drain Current (Pulse, Repetitive)*2 , T _{vj} =150°C*3 | I _{D(pulse)} | 200 | Amperes | | Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1 | P _D | 410 | Watts | | Maximum Junction Temperature | T _{J max} | 175 | °C | | Operating Junction Temperature, Continuous operation (under switching) | T_{jop} | -40 to 150 | °C | | Maximum Case Temperature*1 | T _{c max} | 125 | °C | | Storage Temperature | T _{stg} | -40 to 125 | °C | | Mounting Torque, M5 Mounting Screws | _ | 5 | N-m | | Module Weight (Typical) | _ | 180 | Grams | | Isolation Voltage | V _{ISO} | 4000 | Volts | ^{*1} Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips. *2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating. *3 Junction temperature (T_{vl}) should not increase beyond T_{J (MAX)} rating. ### DC Characteristics, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |--|---------------------|---|------|------|------|-------| | Drain Source Leakage Current | I _{DSS} | V_{DS} =1700V, V_{GS} =0V | = | - | 1.0 | mA | | Gate Source Leakage Current | I _{GSS} | V_{DS} =0V, V_{GS} =15V | - | - | 0.5 | μΑ | | Gate Source Threshold Voltage | $V_{GS(th)}$ | V_{DS} =10V, I_{D} =37.5mA | 1.8 | = | 3.2 | Volts | | Drain Source On-Resistance (chip) | R _{DS(on)} | V _{GS} =15V I _D =100A | - | 14.5 | 22.5 | mΩ | | | | T _J =150°C | = | 22 | - | mΩ | | Internal Gate Source Series Resistance | R _g | Per Switch | = | 1.5 | - | Ω | | Stray Inductance | L _s | P-N | = | 10 | - | nH | Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Silicon Carbide Six-Pack MOSFET Module 100 Amperes / 1700 Volts / 14.5 mΩ ### Dynamic Characteristics, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |------------------------------|------------------|---|------|------|------|-------| | Input Capacitance | C _{ISS} | | - | 9.2 | | nF | | Output Capacitance | Coss | V_{GS} =0 V , V_{DS} =10 V | - | 5.7 | - | nF | | Reverse Transfer Capacitance | C _{RSS} | | - | 1.3 | - | nF | | Turn-On Delay Time | $t_{D(on)}$ | $V_{DD} = 900 \text{V}, \ V_{GS} = \pm 15 \text{V}$ | - | 200 | - | ns | | Rise Time | t _R | I _D =120A, R _G =1Ω, T _J =150°C | - | 50 | - | ns | | Turn-Off Delay Time | $t_{D(off)}$ | Inductive Load, per Pulse | - | 220 | - | ns | | Fall Time | t _F | | - | 30 | - | ns | | Turn-On Energy | Eon | $V_{DD} = 900V, V_{GS} = \pm 15V$ | - | 5.4 | - | mJ | | Turn-Off Energy | E _{off} | I_D =100A, R_G =1 Ω , T_J =150°C Inductive Load, per Pulse | - | 1.7 | - | mJ | | Total Gate Charge | Q_G | V_{DD} =900V, V_{GS} =0 to 15V I_{D} =120A, T_{j} =25°C | - | 267 | - | nC | ### Anti-parallel Diode, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |-----------------------|----------|--|------|------|------|-------| | Diode Forward Voltage | V_{SD} | V _{GS} =-15V I _S =100A | = | 1.64 | - | V | | | | T _J =150°C | - | 2.52 | - | V | ### **Thermal Resistance Characteristics** | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |--------------------------------------|----------------------|------------------------------------|------|------|------|-------| | Thermal Resistance, Junction to Case | R _{th(j-c)} | Per MOSFET | - | - | 0.36 | °C/W | | Thermal Resistance, Junction to Case | R _{th(j-c)} | Per Diode | - | - | 0.40 | °C/W | | Contact Thermal Resistance | $R_{\text{th(c-s)}}$ | Per Module, Thermal Grease Applied | - | 0.07 | - | °C/W | #### **NTC Thermistor Part** | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |-------------------------|----------------------|--|------|------|------|-------| | Zero Power Resistance | R ₂₅ | T _C =25°C | 4.85 | 5.00 | 5.15 | kΩ | | Deviation of Resistance | ΔR/R | $T_C=100^{\circ}C, R_{100}=493\Omega$ | -7.3 | - | +7.8 | % | | B constant | B _(25/50) | $B_{(25/50)}=In(R_{25}/R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$ | | 3375 | | K | | Power Dissipation | P ₂₅ | T _C =25°C | _ | _ | 10 | mW | ^{*4} R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K) Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Silicon Carbide Six-Pack MOSFET Module 100 Amperes / 1700 Volts / 14.5 mΩ