

QJD1760SB1 Preliminary

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 540 Amperes / 1700 Volts/ 4.8 mΩ

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters	Dimensions	Inches	Millimeters
А	6.14	156.0	U	1.65	41.91
В	5.4	137.0	V	0.75	19.05
С	4.8	121.7	W	0.57	14.5
D	4.33	110.0	Х	0.96	24.5
E	3.62	94.5	Y	0.71	18.0
F	0.53	13.5	Z	0.13	3.4
G	M6 Metric	M6	AA	2.3	58.4
Н	0.55	4.0	AB	0.7	17.5
J	0.86	22.0	AC	0.78	20.0
К	0.47	12.0	AD	0.32	8.0
L	1.53	39.0	AE	0.16 Dia.	4.0 Dia.
М	1.97	50.0	AF	0.1 Dia.	2.5 Dia.
N	2.26	57.5	AG	0.04	1.0
Р	2.44	62.0	AH	0.021	0.55
Q	0.21	5.5	AJ	0.045	1.15
R	0.3	7.75	AK	0.04 x 0.03	1.15 x 0.8
S	0.6	15.0	AL	0.15	3.81
Т	0.60	15.24	AM	0.32	8.0
			AN	0.43	11.0

Description:

Powerex Dual MOSFET Modules are designed for use in high frequency applications. Each module consists of two SiC-DMOS in half-bridge configuration. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- \Box Low On-Resistance (4.8 m Ω)
- □ Ultra-Low Switching Losses
- □ High-Frequency Operation
- Copper Baseplate and
- Aluminum Nitride Insulator Wolfspeed[®] 3rd generation
- SiC

Applications:

- □ Solar Inverters, Wind Converters
- ☐ Motor Drives
- □ Induction Heating
- □ HF Converters

□ Traction Inverters

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

QJD1760SB1

Silicon Carbide Dual MOSFET Module 540 Amperes / 1700 Volts

Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	Test Conditions	QJD1760SB1	Units
Power Device Junction Temperature	Тј		-40 to 150	°C
V _{GS} Storage Temperature	T _{stg}		-40 to 125	°C
Continuous Drain Current	۱ _D	$V_{GS} = 20V, T_{C} = 25^{\circ}C$	540	Amperes
	-	$V_{GS} = 20V, T_{C} = 90^{\circ}C$	375	Amperes
Pulsed Drain Current*1	I _{D(pulse)}	$T_{C} = 25^{\circ}C$	1500	Amperes
Power Dissipation	P _{tot}	$T_{C} = 25^{\circ}C$	2780	Watts
Drain Source Breakdown Voltage	VDS(max)	$V_{GS} = 0V, I_{DS} = 2mA$	1700	Volts
Module Inductance, Main Terminals-Chip (Per Switch)	L		4.5	nH
Mounting Torque, M5 Mounting Screws	—		31	in-lb
Mounting Torque, M6 Main Terminal Screws	_		40	in-lb
Module Weight (Typical)	_		500	Grams
Isolation Voltage, AC 1 minute, 60Hz Sinusoidal	VISO		4000	Volts

DC Characteristics, $T_j = 25$ °C unless otherwise

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain Source Leakage Current	IDSS	$V_{DS} = 1700V, V_{GS} = 0V$	_	_	4	mA
		T _j = 150°C	_	—	8	mA
Gate Source Leakage Current	IGSS	$V_{DS} = 0V$, $V_{GS} = 20V$	_	_	1000	nA
Recommended Gate Source Voltage	VGS		_	-5 / +20		Volts
Maximum Gate Source Voltage	VGS(max)	$V_{DS} = 0V$	_	_	-10 / +25	Volts
Gate Source Threshold Voltage	V _{th}	$V_{GS} = V_{DS}$, $I_{DS} = 180$ mA	2.0	2.4	4.0	Volts
Drain Source On-Resistance	RDS(on)	$V_{GS} = 20V, I_{DS} = 500A$	_	4.8	6.0	mΩ
		T _j = 150°C		9.7	12.0	mΩ
Internal Gate Source Series Resistance	Rgate(esr)	V_{GS} = 0V, f = 1MHz, Drain Floating	—	0.4	0.45	Ω
Per Upper or Lower MOSFET						

*1 Pulse width limited by Tj(max).

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

QJD1760SB1 Silicon Carbide Dual MOSFET Module 540 Amperes / 1700 Volts

Dynamic Characteristics, T_j = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	CISS			36.7		nF
Output Capacitance	Coss	$V_{GS} = 0V, V_{DS} = 1000V, f = 1 MHz$		1.7		nF
Reverse Transfer Capacitance	C _{RSS}			0.07	_	nF
Turn-On Delay Time	^t d(on)			TBD		ns
RiseTime	t _r	V_{DD} = 1200V, V_{GS} = -5 to 20V,		TBD		ns
Turn-Off Delay Time	^t d(off)	$I_D = 500A, R_G(max) = 0\Omega$		TBD		ns
Fall Time	t _f	. ,		TBD		ns
Turn-On Energy	Eon	V_{DD} = 1200V, V_{GS} = -5 to 20V,		TBD		mJ
Turn-Off Energy	Eoff	$I_{D} = 540A, R_{G} = 2.2\Omega$		TBD		mJ
Recovery Energy	E _{rr}	T _j = 150°C		TBD		mJ
Total Gate Charge	QG	V_{DD} = 1200V, V_{GS} = -5 to 20V,		1880		nC
		I _D = 500A, R _G = 2.2Ω, T _j = 25°C				

Body Diode, T_j = 25 °C unless otherwise specified*²

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Pulsed Body Diode Current	۱ _S	$V_{GS} = -5V$	—	—	720 ^{*2}	Amperes
Reverse Recovery Current	Irr	$V_{GS} = -5V, I_D = 540A, V_R = 1200V$		140	—	Amperes
Reverse Recovery Charge	Qrr	T _j = 25°C, di/dt = 1400A/μs	_	5.3	_	μC
Diode Forward Voltage	V _{SD}	$V_{GS} = 0V, I_{SD} = 400A$	_	4.18	—	Volts
			3.60	_	_	Volts

Thermal Resistance Characteristics

Children Sittes						
Thermal Resistance, Junction to Case*3	R _{th(j-c)}	Per MOSFET	_		0.045	°C/W
Contact Thermal Resistance*3	R _{th(c-f)}	Thermal Grease Applied		0.015	_	°C/W

NTC Thermistor Part

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Zero Power Resistance	R ₂₅	$T_{C} = 25^{\circ}C$	4.85	5.00	5.15	kΩ
Deviation of Resistance	$\Delta R/R$	$T_{C} = 100^{\circ}C, R_{100} = 493\Omega$	-7.3	—	+7.8	%
B Constant	B _(25/50)	$B_{(25/50)} = In(R_{25} / R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$	—	3375	—	К
Power Dissipation	P ₂₅	$T_{C} = 25^{\circ}C$		_	10	mW

*2 Use of body diode is recommended in pulse mode only, with pulse duration up to 1µs.

*3 T_C, T_f measured point is just under the chips.

*4 R25: Resistance at Absolute Temperature T25(K), R50: Resistance at Absolute

Temperature $T_{50}(K)$, $T_{25} = 25(^{\circ}C) + 273.15 = 298.15(K)$, $T_{50} = 50(^{\circ}C) + 273.15 = 323.15(K)$

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

QJD1760SB1 Silicon Carbide Dual MOSFET Module

540 Amperes / 1700 Volts

DRAIN-SOURCE VOLTAGE, V_{DS}, (VOLTS)

$$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_i \left\{ 1 - \exp\left(\frac{-t}{\tau_i}\right) \right\}$$

	1	2	3	4
R_i	6.87E-05	-2.02E-04	6.35E-03	3.85E-02
τ	3.33E-04	1.99E-03	1.05E-02	1.09E-01