

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 200 Amperes / 1700 Volts / 7.3 mΩ

Dual SiC MOSFET Module 200 Amperes / 1700 Volts

Description:

Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of two MOSFET Silicon Carbide Transistors with each transistor having a reverse connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Junction Temperature: 175°C
 ☐ Industry Leading R_{DS(on)}
 ☐ High Speed Switching
 ☐ Low Switching Losses
- ☐ Low Switching Losses
- ☐ Low Drive Requirement
- ☐ High Power Density
- ☐ Zero Reverse Recovery from Diode
- ☐ Isolated Baseplate
- ☐ Aluminum Nitride Isolation

Applications:

- ☐ Energy Saving Power Systems☐ High Frequency Type Power Systems
- ☐ High Temperature Power Systems

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272

Silicon Carbide **Dual MOSFET Module** 200 Amperes / 1700 Volts / 7.3 m Ω

Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	QJD1720SA1	Units
Drain-Source Voltage (G-S Short)	V_{DSS}	1700	Volts
Gate-Source Voltage, DC, D-S short	V _{GSS}	±20	Volts
Drain Current (Continuous) at T _C =48°C*1	I _D	200	Amperes
Drain Current (Pulse, Repetitive)*2 , T _{vj} =150°C*3	I _{D(pulse)}	300	Amperes
Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1	P _D	820	Watts
Maximum Junction Temperature	T_{Jmax}	175	°C
Operating Junction Temperature, Continuous operation (under switching)	T_{jop}	-40 to 150	°C
Maximum Case Temperature*1	T _{c max}	125	°C
Storage Temperature	T_{stg}	-40 to 125	°C
Mounting Torque, M5 Mounting Screws	=	3.5	N-m
Terminal Connection Torque, M6 Terminal Screws	=	4.5	N-m
Module Weight (Typical)	_	420	Grams
Isolation Voltage	V_{ISO}	4000	Volts

^{*1} Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips.
*2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating.
*3 Junction temperature (T_v) should not increase beyond T_{J (MAX)} rating.

DC Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain Source Leakage Current	I _{DSS}	V _{DS} =1700V, V _{GS} =-15V	=	-	1.0	mA
Gate Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =15V	-	-	0.5	μA
Gate Source Threshold Voltage	$V_{GS(th)}$	V_{DS} =10V, I_D =75mA	1.8	-	3.2	Volts
Drain Source On-Resistance (chip)	R _{DS(on)}	V _{GS} =15V I _D =200A	-	7.3	11.3	mΩ
		T _J =150°C	-	10.74	-	mΩ
Internal Gate Source Series Resistance	R _g	Per Switch	-	0.75	=	Ω
Stray Inductance	L _s	P-N	-	15	-	nΗ

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 200 Amperes / 1700 Volts / 7.3 mΩ

Dynamic Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	C _{ISS}		-	18.3	-	nF
Output Capacitance	Coss	V_{GS} =0 V , V_{DS} =10 V	-	11.3	-	nF
Reverse Transfer Capacitance	C_{RSS}	30 1 , 30 1	-	0.65	-	nF
Turn-On Delay Time	$t_{D(on)}$	V_{DD} =900V, V_{GS} = ±15V I_D =200A, R_G =1 Ω , T_J =150°C	-	200	-	ns
Rise Time	t _R		-	50	-	ns
Turn-Off Delay Time	$t_{D(off)}$	Inductive Load, per Pulse	-	220	-	ns
Fall Time	t _F		-	30	-	ns
Turn-On Energy	Eon	$V_{DD} = 900V, V_{GS} = \pm 15V$	-	10.7	-	mJ
Turn-Off Energy	E _{off}	I_D =200A, R_G =1 Ω , T_J =150°C Inductive Load, per Pulse	-	3.3	-	mJ
Total Gate Charge	Q_{G}	V_{DD} =900V, V_{GS} =0 to 15V I_{D} =200A, T_{j} =25°C	-	533	-	nC

Anti-parallel Diode, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units	
Diode Forward Voltage	V_{SD}	V _{GS} =-15V I _S =200A	-	1.64	-	V	
		T _J =150°C	-	2.52	-	V	_

Thermal Resistance Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per MOSFET	-	-	0.181	°C/W
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per Diode	-	-	0.196	°C/W
Contact Thermal Resistance	$R_{\text{th(c-s)}}$	Per Module, Thermal Grease Applied λ=0.9 W/(mK)	-	0.015	-	°C/W

NTC Thermistor Part

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Zero Power Resistance	R ₂₅	T _C =25°C	4.85	5.00	5.15	kΩ
Deviation of Resistance	ΔR/R	$T_C=100^{\circ}C, R_{100}=493\Omega$	-7.3	-	+7.8	%
B constant	B _(25/50)	$B_{(25/50)} = In(R_{25}/R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$	_	3375		К
Power Dissipation	P ₂₅	T _C =25°C	_		10	mW

^{*4} R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K)

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 200 Amperes / 1700 Volts / 7.3 mΩ

