Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Silicon Carbide Dual MOSFET Module 600 Amperes / 1200 Volts / 4 mΩ # Dual SiC MOSFET Module 420 Amperes / 1200 Volts # **Description:** Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of two MOSFET Silicon Carbide Transistors with each transistor having a reverse connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management. #### Features: - ☐ Junction Temperature: 175°C ☐ Industry Leading R_{DS(on)} ☐ High Speed Switching ☐ Low Switching Losses ☐ Low Capacitance - ☐ Low Drive Requirement - ☐ High Power Density - \square Zero Reverse Recovery from Diode - $\hfill\Box$ Isolated Baseplate - ☐ Aluminum Nitride Isolation #### Applications: - ☐ Energy Saving Power Systems ☐ High Frequency Type Power Systems - ☐ High Temperature Power Systems Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 Silicon Carbide **Dual MOSFET Module** 600 Amperes / 1200 Volts / 4 $m\Omega$ # Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified | Characteristics | Symbol | QJD1260SA1 | Units | |---|-----------------------|------------|---------| | Drain-Source Voltage (G-S Short) | V_{DSS} | 1200 | Volts | | Gate-Source Voltage, DC, D-S short | V _{GSS} | 0 / +22 | Volts | | Gate-Source Voltage, pulse, repetitive | V_{GSS} | -5 / +22 | Volts | | Drain Current (Continuous) at T _C =61°C*1 | I _D | 600 | Amperes | | Drain Current (Pulse, Repetitive)*2 , T _{vj} =150°C*3 | I _{D(pulse)} | 1200 | Amperes | | Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1 | P _D | 2270 | Watts | | Maximum Junction Temperature | T _{J max} | 175 | °C | | Operating Junction Temperature, Continuous operation (under switching) | T _{j op} | -40 to 150 | °C | | Maximum Case Temperature*1 | T _{c max} | 125 | °C | | Storage Temperature | T _{stg} | -40 to 125 | °C | | Mounting Torque, M5 Mounting Screws | _ | 3.5 | N-m | | Terminal Connection Torque, M6 Terminal Screws | _ | 4.5 | N-m | | Module Weight (Typical) | _ | 420 | Grams | | Isolation Voltage | V _{ISO} | 3500 | Volts | ^{*1} Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips. *2 Pulse width and repetition rate should be such that device junction temperature (T_.) does not exceed T_{J (MAX)} rating. # DC Characteristics, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |--|---------------------|---|------|------|------|-------| | Drain Source Leakage Current | I _{DSS} | V_{DS} =1200V, V_{GS} =0V | - | - | 1.2 | mA | | Gate Source Leakage Current | I _{GSS} | V _{DS} =0V, V _{GS} =15V | = | = | 1.0 | μA | | Recommended Gate Source Voltage | V_{GS} | | - | ±15V | - | Volts | | Maximum Gate Source Voltage | $V_{GS(max)}$ | V _{DS} =0V | - | - | ±15V | Volts | | Gate Source Threshold Voltage | $V_{GS(th)}$ | V_{DS} =10V, I_{D} =30mA | 3.6 | 4.6 | 5.6 | Volts | | Drain Source On-Resistance (chip) | R _{DS(on)} | V _{GS} =15V I _D =600A | 2.0 | 4.0 | 5.5 | mΩ | | | | T _J =150°C | - | 4.4 | - | mΩ | | Internal Gate Source Series Resistance | R _g | Per Switch | = | 0.3 | - | Ω | | Stray Inductance | Ls | P-N | - | 15 | = | nH | ^{*3} Junction temperature (T_{vj}) should not increase beyond $T_{J \text{ (MAX)}}$ rating. Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Silicon Carbide Dual MOSFET Module 600 Amperes / 1200 Volts / 4 mΩ ## Dynamic Characteristics, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |------------------------------|--------------------|---|------|------|------|-------| | Input Capacitance | C _{ISS} | | - | 44.5 | - | nF | | Output Capacitance | Coss | $V_{GS}=0V$, $V_{DS}=10V$ | - | 32.5 | = | nF | | Reverse Transfer Capacitance | C_{RSS} | | - | 2.5 | = | nF | | Turn-On Delay Time | t _{D(on)} | $V_{DD} = 600 \text{V}, \ V_{GS} = \pm 15 \text{V}$ | - | 160 | - | ns | | Rise Time | t _R | I _D =600A, R _G =1Ω, T _J =150°C | - | 85 | - | ns | | Turn-Off Delay Time | $t_{D(off)}$ | Inductive Load, per Pulse | - | 270 | - | ns | | Fall Time | t _F | | - | 55 | - | ns | | Turn-On Energy | E _{on} | V_{DD} =600V, V_{GS} = ±15V | - | 25 | - | mJ | | Turn-Off Energy | E _{off} | I_D =600A, R_G =1 Ω , T_J =150°C Inductive Load, per Pulse | - | 15 | - | mJ | | Total Gate Charge | Q_G | V_{DD} =600V, V_{GS} =0 to 15V I_{D} =600A, T_{j} =25°C | - | 1550 | - | nC | ### Anti-parallel Diode, T_J=25°C unless otherwise specified | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |-----------------------|----------|--|------|------|------|-------| | Diode Forward Voltage | V_{SD} | V _{GS} =-15V I _S =600A | - | 1.53 | - | V | | | | T _J =150°C | - | 2.05 | - | V | ### **Thermal Resistance Characteristics** | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |--------------------------------------|----------------------|---|------|-------|-------|-------| | Thermal Resistance, Junction to Case | R _{th(j-c)} | Per MOSFET | - | - | 0.114 | °C/W | | Thermal Resistance, Junction to Case | R _{th(j-c)} | Per Diode | - | - | 0.094 | °C/W | | Contact Thermal Resistance | R _{th(c-s)} | Per Module, Thermal Grease Applied λ=0.9 W/(mK) | - | 0.015 | - | °C/W | #### **NTC Thermistor Part** | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Units | |-------------------------|----------------------|--|------|------|------|-------| | Zero Power Resistance | R ₂₅ | T _C =25°C | 4.85 | 5.00 | 5.15 | kΩ | | Deviation of Resistance | ΔR/R | $T_C=100^{\circ}C, R_{100}=493\Omega$ | -7.3 | - | +7.8 | % | | B constant | B _(25/50) | $B_{(25/50)}=In(R_{25}/R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$ | _ | 3375 | _ | K | | Power Dissipation | P ₂₅ | T _C =25°C | _ | | 10 | mW | ^{*4} R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K) Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com Silicon Carbide Dual MOSFET Module 600 Amperes / 1200 Volts / 4 $m\Omega$