

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 600 Amperes / 1200 Volts / 4 mΩ

Dual SiC MOSFET Module 420 Amperes / 1200 Volts

Description:

Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of two MOSFET Silicon Carbide Transistors with each transistor having a reverse connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Junction Temperature: 175°C
 ☐ Industry Leading R_{DS(on)}
 ☐ High Speed Switching
 ☐ Low Switching Losses
 ☐ Low Capacitance
- ☐ Low Drive Requirement
- ☐ High Power Density
- \square Zero Reverse Recovery from Diode
- $\hfill\Box$ Isolated Baseplate
- ☐ Aluminum Nitride Isolation

Applications:

- ☐ Energy Saving Power Systems
 ☐ High Frequency Type Power Systems
- ☐ High Temperature Power Systems

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272

Silicon Carbide **Dual MOSFET Module** 600 Amperes / 1200 Volts / 4 $m\Omega$

Absolute Maximum Ratings, $T_j = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	QJD1260SA1	Units
Drain-Source Voltage (G-S Short)	V_{DSS}	1200	Volts
Gate-Source Voltage, DC, D-S short	V _{GSS}	0 / +22	Volts
Gate-Source Voltage, pulse, repetitive	V_{GSS}	-5 / +22	Volts
Drain Current (Continuous) at T _C =61°C*1	I _D	600	Amperes
Drain Current (Pulse, Repetitive)*2 , T _{vj} =150°C*3	I _{D(pulse)}	1200	Amperes
Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1	P _D	2270	Watts
Maximum Junction Temperature	T _{J max}	175	°C
Operating Junction Temperature, Continuous operation (under switching)	T _{j op}	-40 to 150	°C
Maximum Case Temperature*1	T _{c max}	125	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Mounting Torque, M5 Mounting Screws	_	3.5	N-m
Terminal Connection Torque, M6 Terminal Screws	_	4.5	N-m
Module Weight (Typical)	_	420	Grams
Isolation Voltage	V _{ISO}	3500	Volts

^{*1} Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips. *2 Pulse width and repetition rate should be such that device junction temperature (T_.) does not exceed T_{J (MAX)} rating.

DC Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain Source Leakage Current	I _{DSS}	V_{DS} =1200V, V_{GS} =0V	-	-	1.2	mA
Gate Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =15V	=	=	1.0	μA
Recommended Gate Source Voltage	V_{GS}		-	±15V	-	Volts
Maximum Gate Source Voltage	$V_{GS(max)}$	V _{DS} =0V	-	-	±15V	Volts
Gate Source Threshold Voltage	$V_{GS(th)}$	V_{DS} =10V, I_{D} =30mA	3.6	4.6	5.6	Volts
Drain Source On-Resistance (chip)	R _{DS(on)}	V _{GS} =15V I _D =600A	2.0	4.0	5.5	mΩ
		T _J =150°C	-	4.4	-	mΩ
Internal Gate Source Series Resistance	R _g	Per Switch	=	0.3	-	Ω
Stray Inductance	Ls	P-N	-	15	=	nH

^{*3} Junction temperature (T_{vj}) should not increase beyond $T_{J \text{ (MAX)}}$ rating.

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 600 Amperes / 1200 Volts / 4 mΩ

Dynamic Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	C _{ISS}		-	44.5	-	nF
Output Capacitance	Coss	$V_{GS}=0V$, $V_{DS}=10V$	-	32.5	=	nF
Reverse Transfer Capacitance	C_{RSS}		-	2.5	=	nF
Turn-On Delay Time	t _{D(on)}	$V_{DD} = 600 \text{V}, \ V_{GS} = \pm 15 \text{V}$	-	160	-	ns
Rise Time	t _R	I _D =600A, R _G =1Ω, T _J =150°C	-	85	-	ns
Turn-Off Delay Time	$t_{D(off)}$	Inductive Load, per Pulse	-	270	-	ns
Fall Time	t _F		-	55	-	ns
Turn-On Energy	E _{on}	V_{DD} =600V, V_{GS} = ±15V	-	25	-	mJ
Turn-Off Energy	E _{off}	I_D =600A, R_G =1 Ω , T_J =150°C Inductive Load, per Pulse	-	15	-	mJ
Total Gate Charge	Q_G	V_{DD} =600V, V_{GS} =0 to 15V I_{D} =600A, T_{j} =25°C	-	1550	-	nC

Anti-parallel Diode, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	V_{SD}	V _{GS} =-15V I _S =600A	-	1.53	-	V
		T _J =150°C	-	2.05	-	V

Thermal Resistance Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per MOSFET	-	-	0.114	°C/W
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per Diode	-	-	0.094	°C/W
Contact Thermal Resistance	R _{th(c-s)}	Per Module, Thermal Grease Applied λ=0.9 W/(mK)	-	0.015	-	°C/W

NTC Thermistor Part

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Zero Power Resistance	R ₂₅	T _C =25°C	4.85	5.00	5.15	kΩ
Deviation of Resistance	ΔR/R	$T_C=100^{\circ}C, R_{100}=493\Omega$	-7.3	-	+7.8	%
B constant	B _(25/50)	$B_{(25/50)}=In(R_{25}/R_{50}) / (1/T_{25} - 1/T_{50})^{*4}$	_	3375	_	K
Power Dissipation	P ₂₅	T _C =25°C	_		10	mW

^{*4} R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K)

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 600 Amperes / 1200 Volts / 4 $m\Omega$

