

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

QJD1212SA2 Preliminary

Silicon Carbide Dual MOSFET Module 120 Amperes / 1200 Volts / 20 mΩ

Dual MOSFET Module 120 Amperes / 1200 Volts

Description:

Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of two MOSFET Silicon Carbide Transistors with each transistor having a reverse connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- □ Junction Temperature: 175°C
- □ Industry Leading R_{DS(on)}
- □ High Speed Switching
- \Box Low Switching Losses
- □ Low Capacitance
- \Box Low Drive Requirement
- □ High Power Density
- □ Zero Reverse Recovery from Diode
- □ Isolated Baseplate
- □ Aluminum Nitride Isolation

Applications:

- Energy Saving Power Systems
- □ High Frequency Type Power Systems
- □ High Temperature Power Systems

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide **Dual MOSFET Module** 120 Amperes / 1200 Volts / 20 m Ω

Absolute Maximum Ratings, T_j = 25°C unless otherwise specified

Characteristics	Symbol	QJD1212SA2	Units
Drain-Source Voltage (G-S Short)	V _{DSS}	1200	Volts
Gate-Source Voltage, DC, D-S short	V _{GSS}	0 / +22	Volts
Gate-Source Voltage, pulse, repetitive	V _{GSS}	-5 / +22	Volts
Drain Current (Continuous) at T _C =61°C*1	I _D	120	Amperes
Drain Current (Pulse, Repetitive)*2 , Tvj=150°C*3	I _{D(pulse)}	240	Amperes
Maximum Power Dissipation (T _C =25°C, T _J < 175°C) *1	PD	454	Watts
Maximum Junction Temperature	T_{Jmax}	175	°C
Operating Junction Temperature, Continuous operation (under switching)	T _{j op}	-40 to 150	°C
Maximum Case Temperature*1	T _{c max}	125	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Mounting Torque, M6 Mounting Screws	_	5	N-m
Module Weight (Typical)	_	270	Grams
Isolation Voltage	V _{ISO}	3500	Volts

*1 Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink under the chips. *2 Pulse width and repetition rate should be such that device junction temperature (T_J) does not exceed T_{J (MAX)} rating. *3 Junction temperature (T_s) should not increase beyond T_{J (MAX)} rating.

DC Characteristics, T_J=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain Source Leakage Current	I _{DSS}	V_{DS} =1200V, V_{GS} =0V	-	-	1.2	mA
Gate Source Leakage Current	I _{GSS}	$V_{DS}=0V, V_{GS}=15V$	-	-	1000	nA
Gate Source Threshold Voltage	V _{GS(th)}	V_{DS} =10V, I_{D} =6mA	3.6	4.6	5.6	Volts
Drain Source On-Resistance (chip)	R _{DS(on)}	V _{GS} =15V I _D =120A	10	20	27.6	mΩ
		T _J =150°C	-	22	-	mΩ
Internal Gate Source Series Resistance	R _g	Per Switch	-	1.5	-	Ω
Stray Inductance	Ls	P-N	-	10	-	nH

Dynamic Characteristics, T_J=25°C unless otherwise specified

QJD1212SA2 Preliminary

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 120 Amperes / 1200 Volts / 20 mΩ

			<u>izu Ampe</u>	<u>res / 12</u>	00 001	<u>5 / 20 ms</u>
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	C _{ISS}		-	8.0	-	nF
Output Capacitance	C _{OSS}	V _{GS} =0V, V _{DS} =10V	-	6.5	-	nF
Reverse Transfer Capacitance	C _{RSS}		-	220	-	pF
Turn-On Delay Time	t _{D(on)}	V_{DD} =600V, V_{GS} = ±15V	-	35	-	ns
Rise Time	t _R	I _D =120A, R _G =1Ω, T _J =150°C	-	20	-	ns
Turn-Off Delay Time	t _{D(off)}	Inductive Load, per Pulse	-	65	-	ns
Fall Time	t _F		-	15	-	ns
Turn-On Energy	Eon	V_{DD} =600V, V_{GS} = ±15V	-	6.6	-	mJ
Turn-Off Energy	E _{off}	I_D =120A, R_G =1 Ω , T_J =150°C Inductive Load, per Pulse	-	5.4	-	mJ
Total Gate Charge	Q _G	V_{DD} =600V, V_{GS} =0 to 15V I _D =120A, T _j =25°C	-	257	-	nC

Anti-parallel Diode, TJ=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	V _{SD}	V_{GS} =-15V I _S =120A	-	1.53	-	V
		T _J =150°C	-	2.05	-	V

Thermal Resistance Characteristics

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per MOSFET	-	-	0.52	°C/W
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per Diode	-	-	0.47	°C/W
Contact Thermal Resistance	R _{th(c-s)}	Per ½ Module, Thermal Grease	-	0.04	-	°C/W
		Applied				

NTC Thermistor Part

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Zero Power Resistance	R ₂₅	T _c =25°C	4.85	5.00	5.15	kΩ
Deviation of Resistance	ΔR/R	T_{C} =100°C, R_{100} =493 Ω	-7.3	-	+7.8	%
B constant	B _(25/50)	$B_{(25/50)} {=} ln(R_{25}/R_{50}) \ / \ (1/T_{25} - 1/T_{50})^{*4}$	_	3375		K
Power Dissipation	P ₂₅	T _c =25°C			10	mW

*4 R25: Resistance at Absolute Temperature T25 (K), R50: Resistance at Absolute Temperature T50 (K), T25 = 25(°C) + 273.15 = 298.15(K), T50 = 50(°C) + 273.15 = 323.15(K)

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Silicon Carbide Dual MOSFET Module 120 Amperes / 1200 Volts / 20 mΩ

Dimensions	Inches	Millimeters	Dimensions	Inches	Millimeters
А	4.32	109.8	Q	0.449	11.40
В	2.21	56.1	R	0.885	22.49
С	0.71	18.0	S	1.047	26.6
D	3.70±0.02	94.0±0.5	Т	0.15	3.80
E	2.026	51.46	U	0.16	4.0
F	3.17	80.5	V	0.30	7.5
G	1.96	49.8	w	0.045	1.15
н	1.00	25.5	x	0.03	0.8
к	0.87	22.0	Y	0.16	4.0
L	0.266	6.75	Z	0.47	12.1
М	0.26	6.5	AA	0.17 Dia.	4.3 Dia.
Ν	0.59	15.0	AB	0.10 Dia.	2.5 Dia.
Р	0.586	14.89	AC	0.08 Dia.	2.1 Dia.

5/24 Rev. 0