

1200V/800A Half-Bridge SiC MOSFET Module

1

Description

The PRXS800HF12I5B3 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy.

Features

- $\hfill\Box$ 1200V/1.7m Ω @ T $_j$ = 25°C, V $_{GS}$ = 18V
- ☐ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- □ Low Inductive Design
- ☐ Thermistor inside

Applications

- □ xEV Applications
- ☐ Motor Drives
- □ Vehicle Fast Chargers
- □ Smart-Grid / Grid-Tied Distributed Generation

Circuit Diagram

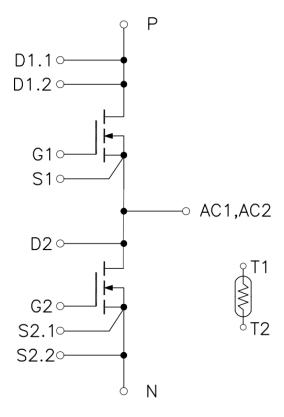


Figure 1. Out drawing & circuit diagram for PRXS800HF12I5B3

Note: Please use **S2.1** for the low side drive signal and do not connect it to **S2.2** which is power terminal

PRXS800HF12I5B3 1200V/800A Half-Bridge SiC MOSFET Module

Pin Configuration and Marking Information

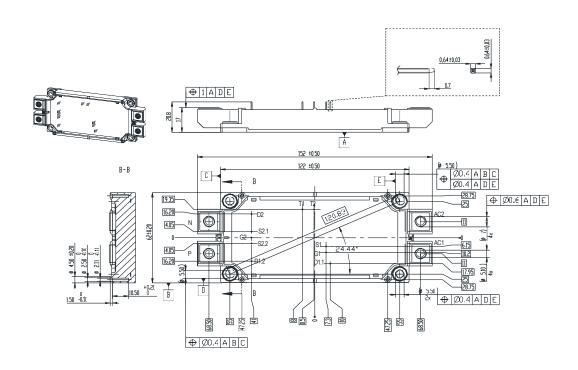


Figure 2. Pin configuration

Module

Parameter	Conditions	Value	Unit
Isolation voltage	RMS, f =50Hz, t =1min	3.4	kV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 13	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
CTI	-	>400	-
Module lead resistance, terminals – chip	$T_C = 25^{\circ}C$	0.2	mΩ
Mounting torque for module mounting	M5, M6	3 to 6	Nm
Weight	-	350	g

PRXS800HF12I5B3 1200V/800A Half-Bridge SiC MOSFET Module

Maximum Ratings $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Conditions	Ratings	Unit	
V_{DSS}	Drain-Source Voltage	G-S Short	1200	V	
V _{GSS}	Gate-Source Voltage	D-S Short, AC frequency ≥1Hz, Note1	-11V/+23V	V	
I_{DS}	DC Continuous Drain Current	T _f =25°C	720	A	
I_{DS}	DC Continuous Drain Current	T _f =65C	620	A	
I_{SD}	Source (Body Diode) Current	T _f =25°C, with ON signal	720	A	
I_{SD}	Source (Body Diode) Current	T _f =65°C, with ON signal	620	A	
I_{DP}	Drain Pulse Current, Peak	Less than 1us, Note2	1600	A	
Ptot	Maximum Power Dissipation	T _C =25°C	2885	W	
T _{jmax}	Max junction temperature	-	175	°C	
T_{stg}	Storage temperature	-	-40 to 125	°C	

Note1: Recommended Operating Value, -4V/+15V, -5V/+18V Note2: Pulse width limited by maximum junction temperature

NTC characteristics

	Parameter		Value			
Symbol		Condition	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	T _c =25°C	-	5	-	kΩ
ΔR/R	Deviation of R100	$T_c = 100^{\circ}C, R_{100} = 493\Omega$	5	-	5	%
P ₂₅	Power dissipation	T _c =25°C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS800HF12I5B3 1200V/800A Half-Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

C1 - 1	Item	G. Per		Value			T7 *4	
Symbol		Cond	Condition		Тур.	Max	Unit	
$V_{\left(BR\right)DSS}$	Drain-Source Breakdown Voltage	$V_{GS}=0V, I_D=8mA$		1200	-	-	V	
I_{DSS}	Zero gate voltage drain current	V _{DS} =1200V, V _{GS} =0V		-	-	80	μΑ	
V _{GS(th)}	Gate-source threshold voltage	$I_D = 80 \text{mA}, V_{DS} = V_{GS}$		2.1	-	5.8	V	
I_{GSS}	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V, T_j = 20V$	25°C	-	-	10	μΑ	
R _{DS(on)}	Static drain-source	I _D =800A	T _j =25°C	1.1	1.7	2.3	mΩ	
(Chip)	On-state resistance	$V_{GS} = 18V$	T _j =175°C	2.6	4.0	5.4	mΩ	
V _{DS(on)}	Static drain-source	I _D =800A	T _j =25°C	1.1	1.7	2.3	V	
(Chip)	On-state voltage	$V_{GS} = 18V$	T _j =175°C	2.6	4.0	5.4	V	
Ciss	Input capacitance	V _{DS} =850V	•	-	32	-	nF	
Coss	Output capacitance	V _{GS} =0V		-	1.84	-	nF	
C _{rss}	Reverse transfer capacitance	f=1MHz		-	0.176	-	nF	
Q _G	Total gate charge	V _{DD} =850V, I _D =800A, V	_{GS} =-5/+18V	-	1520	-	nC	
R _{Gint}	Internal Gate Resistance	f=10MHz, V _{AC} =25		-	0.12	-	Ω	
	m 11 d		T _j =25°C	-	158	-		
t _{d(on)}	Turn-on delay time		$T_j = 150$ °C	T _j =150°C	-	143	-	ns
t _r	Rise time		$T_j = 25$ °C	-	127	-	ns	
u	Kise time	V _{DD} =600V	T _j =150°C	-	115	-		
ty co	Turn-odd delay time	$V_{GS} = +15/-4V$	$T_j = 25$ °C	-	335	-	***	
t _{d(off)}	Turn-odd deray time		T _j =150°C	-	372	-	ns	
4	E II d	$R_{G(OFF)} = 5\Omega$ Inductive load	$T_j = 25^{\circ}C$	-	81	-	ns	
t_{f}	Fall time		T _j =150°C	-	99	-		
Eon	T 1::	switching operation	$T_j = 25$ °C	-	41.1	-	mJ	
Lon	Turn-on power dissipation	switching operation	T _j =150°C	-	34.5	-		
T C III C		T _j =25°C	-	52.5	-	I		
E _{off}	Turn-off power dissipation		T _j =150°C	-	54.2	-	mJ	
R _{th(j-c)}	FET Thermal Resistance	Junction to Case/MOSFI	Junction to Case/MOSFET		0.052	-	K/W	
R _{th(c-f)}	Contact Thermal Resistance	With thermal conductive grease /MOSFET		-	0.02	-	K/W	

PRXS800HF12I5B3 1200V/800A Half-Bridge SiC MOSFET Module

Body Diode Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Gl1	Item	Condition		Value			T T *4
Symbol				Min.	Тур.	Max	Unit
V _{SD}	Body Diode Forward Voltage	$V_{GS} = -4V$	T _j =25°C	3.9	4.9	5.6	V
		$I_{SD} = 800A$	T _j =175°C	3.1	4.2	5.2	
T _{rr}	Reverse recovery time	V _{DD} =600V	T _j =25°C	-	38	-	ns
		$I_{SD} = 800A$	T _j =150°C	-	55	-	
Qrr	Reverse recovery charge	$V_{GS} = +15/-4V$	T _j =25°C	-	2.72	-	C
		$R_{G(ON)} = R_{G(OFF)} = 5\Omega$	T _j =150°C	-	7.45	-	uC
E _{rr}	Diode switching power dissipation	Inductive load switching	T _j =25°C	-	0.68	-	T
		operation	T _j =150°C	-	1.87	1	mJ

Test Conditions

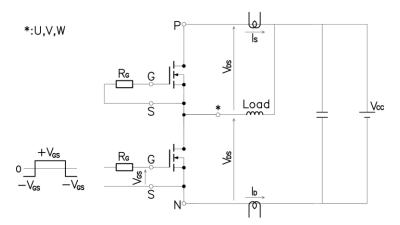


Figure 3. Switching time measure circuit

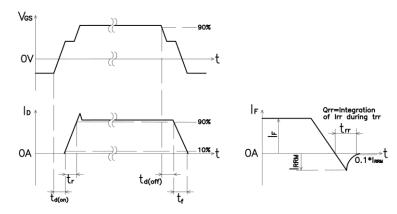
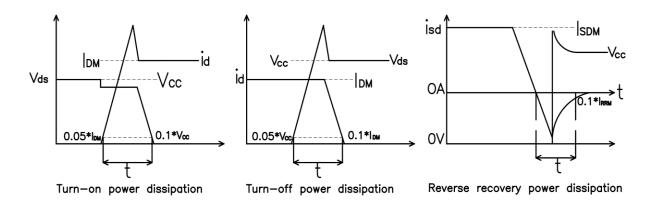
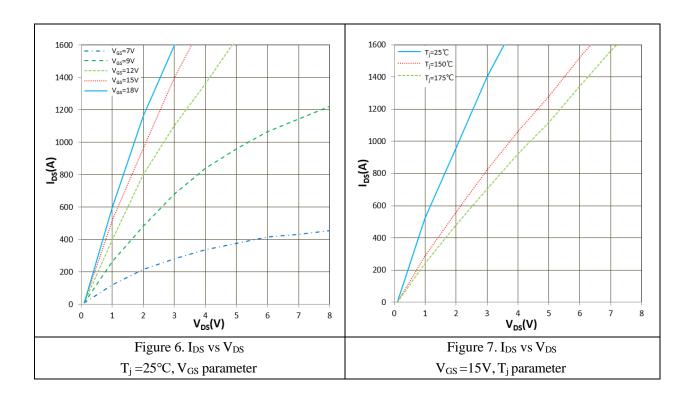
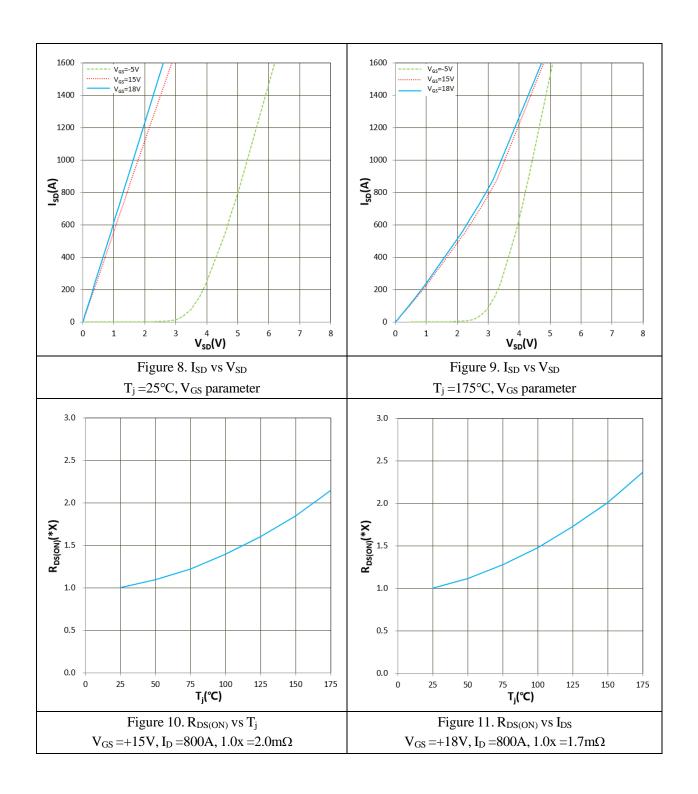
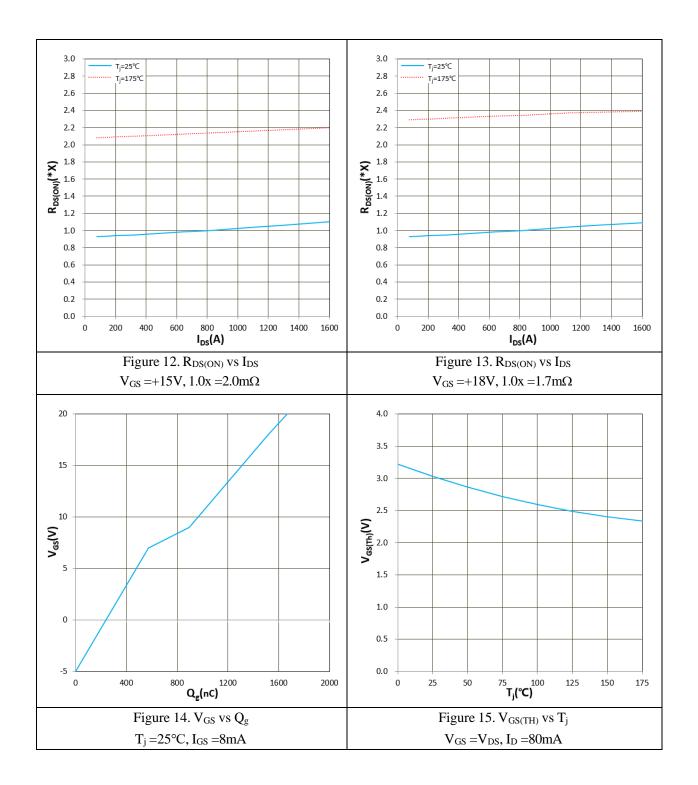


Figure 4. Switching time definition


Figure 5. Switching power dissipation definition

