

2200V/600A Half Bridge SiC MOSFET Module

Description

The PRXS600HF22I4T1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy.

Features

- □ 2200V/2.8mW
- □ Low thermal resistance with AIN AMB
- □ Low inductive design
- □ Thermistor inside

Applications

- □ Smart grid
- □ Motor Drive
- □ Renewable energy

Circuit Diagram

Figure 1. Out drawing & circuit diagram for PRXS600HF22I4T1

PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

Figure 2. Pin configuration

PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module

Module

Parameter	Condition	Value	Unit	
Isolation Voltage	RMS, $f = 50$ Hz, $t = 1$ min	4.0	kV	
Material of module baseplate	-	Cu	-	
Creepage distance	terminal to heatsink terminal to terminal	14.5 13	mm	
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm	
СТІ	-	600	-	
Module lead resistance, terminals – chip	T _C =25°C	0.5	mΩ	
Mounting torque for module mounting	M5, M6	3 to 6	Nm	
Weight	-	350	g	

Maximum Ratings ($T_j = 25$ °C unless otherwise specified)

Symbol	Parameter	Condition	Ratings	Unit
V _{DSS}	Drain-Source Voltage	G-S Short	2200	V
V _{GSS}	Gate-Sourse Voltage	D-S Short, AC frequency ≥1Hz, Note1	-10 to 25	V
I _{DS}	DC Continuous Drain Current	$T_{C} = 25^{\circ}C$, $V_{GS} = +20V$	730	A
I _{DS}	DC Continuous Drain Current	T _C =60°C, V _{GS} =+20V	620	A
I_{SD}	Source (Body diode) Current	T _C =25°C, with ON signal	730	A
I _{SD}	Source (Body diode) Current	T _C =60°C, with ON signal	620	A
I_{DSM}	Pulse Drain Current	$T_C = 25$ °C, Pulse width =1 ms, $V_{GS} = +20$ V, Note2	1200	A
P _{tot}	Total Power Dissipation	T _C =25°C	3200	W
T_{jmax}	Max Junction Temperature	-	150	°C
T_{stg}	Storage Temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, +20V/-6V

Note2: Pulse width limited by maximum junction temperature

NTC characteristics

Symbol	Parameter	C . 14.		TT . *4		
		Condition	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	$T_c=25$ °C	-	5	-	$k\Omega$
ΔR/R	Deviation of R ₁₀₀	$T_c = 100$ °C, $R_{100} = 493\Omega$	-5	-	5	%
P ₂₅	Power dissipation	$T_c=25$ °C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

C	T.	Condition		Value			T T •4	
Symbol	Item			Min.	Тур.	Max	Unit	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 1mA$			2200	-	-	V
I _{DSS}	Zero gate voltage drain Current	V _{DS} =2200V, V _{GS} =0V			-	-	300	μА
V _{GS(th)}	Gate-source threshold Voltage	I _D =250mA, V _{DS} =10V			3.5	4.5	5.5	V
I_{GSS}	Gate-Source Leakage Current	$V_{GS} = 25V / -10V, V_{DS} = 0V$			-	-	±600	nA
P (Chin)	Static drain-source	I _D =600A	T _j =25°C		-	2.8	-	mΩ
$R_{DS(on)}(Chip)$	On-state resistance	$V_{GS} = +20V$	T _j =150°0	C		5.7	8.1	mΩ
V (Chin)	Static drain-source	I _D =600A	T _j =25°C			1.68	-	V
V _{DS(on)} (Chip)	On-state Voltage	** ***	T _j =150°0	C		3.42	4.86	V
R_{Gint}	Internal Gate Resistance	T _j =25°C			-	2.7	-	Ω
C_{iss}	Input Capacitance				-	55	-	nF
C _{oss}	Output Capacitance	$V_{DS} = 1100V, V_{GS} = 0V, f = 10$)kHz		-	1.8	-	nF
C _{rss}	Reverse transfer Capacitance				-	0.05	-	nF
Q_{g}	Total gate charge	$V_{DS} = 1100V, I_{D} = 250A, V_{GS}$	V _{DS} =1100V, I _D =250A, V _{GS} =+20V/-6V			1605	-	nC
4	Turn on delevitime	T _j =25°C		T _j =25°C	-	151	-	***
$t_{d(on)}$	Turn-on delay time	$T_j = 150$ °C	T _j =150°C	-	178	-	ns	
	D' d	1		T _j =25°C	-	39	-	
t_r	Rise time			T _j =150°C	-	45	-	ns
	The Court of	$V_{\rm DD} = 1100 \text{V}$ $I_{\rm D} = 600 \text{A}$		T _j =25°C	-	355	-	
$t_{d(off)}$	Turn-off delay time			T _j =150°C	-	321	-	ns
	T. H. d	$V_{GS} = +20/-6V$ $R_{gon}/R_{goff} = 0.75/3.0\Omega$		T _j =25°C	-	121	-	
t_{f}	Fall time	Inductive load switching operation		T _j =150°C	-	69	-	ns
Г				T _j =25°C	-	18.5	-	,T
\mathbf{E}_{on}	Turn-on power dissipation	non		T _j =150°C	-	16.5	-	mJ
Г	Turn-off power dissipation			T _j =25°C	-	35.6	-	
$E_{ m off}$			7		-	32.3	-	mJ
R _{th(j-c)}	FET Thermal Resistance	Junction to Case			-	0.039	-	K/W
R _{th(c-f)}	Contact thermal Resistance	With thermal conductive grease, Note3			-	0.015	-	K/W

Note3: Assumes Thermal Conductivity of grease is 0.9W/m·K and thickness is 50um.

PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module

Body Diode Electrical characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified, chip})$

Cross hal	Item	Candition	Value			T I 24	
Symbol		Condition		Min.	Тур.	Max	Unit
77	Body Diode Forward Voltage	$V_{GS} = -6V$ $I_{SD} = 600A$	T _j =25°C	-	2.8	-	V
V_{SD}			T _j =150°C	-	4.5	-	
T _{rr} R	Reverse recovery time	$\begin{array}{c} V_{DD}\!=\!1100V, I_{D}\!=\!600A \\ V_{GS}\!=\!+20/\!\!-\!6V, \\ R_{gon}/R_{goff}\!=\!0.75/3.0\Omega \\ Inductive\ load \end{array}$	T _j =25°C	-	43	-	ns
			T _j =150°C	-	32	-	
E_{rr}	Diode switching power dissipation		T _j =25°C	-	1.50	-	mJ
			T _j =150°C	-	1.35	-	

Test Conditions

Figure 3. Switching time measure circuit

Figure 4. Switching time definition

8

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

