2200V/600A Half Bridge SiC MOSFET Module ## **Description** The PRXS600HF22I4T1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy. #### **Features** - □ 2200V/2.8mW - □ Low thermal resistance with AIN AMB - □ Low inductive design - □ Thermistor inside ## **Applications** - □ Smart grid - □ Motor Drive - □ Renewable energy # **Circuit Diagram** Figure 1. Out drawing & circuit diagram for PRXS600HF22I4T1 ### PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module ## **Pin Configuration and Marking Information** Figure 2. Pin configuration ### PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module ## **Module** | Parameter | Condition | Value | Unit | | |--|--|------------|------|--| | Isolation Voltage | RMS, $f = 50$ Hz, $t = 1$ min | 4.0 | kV | | | Material of module baseplate | - | Cu | - | | | Creepage distance | terminal to heatsink
terminal to terminal | 14.5
13 | mm | | | Clearance | terminal to heatsink
terminal to terminal | 12.5
10 | mm | | | СТІ | - | 600 | - | | | Module lead resistance, terminals – chip | T _C =25°C | 0.5 | mΩ | | | Mounting torque for module mounting | M5, M6 | 3 to 6 | Nm | | | Weight | - | 350 | g | | ## **Maximum Ratings** ($T_j = 25$ °C unless otherwise specified) | Symbol | Parameter | Condition | Ratings | Unit | |-------------------|-----------------------------|---|------------|------| | V _{DSS} | Drain-Source Voltage | G-S Short | 2200 | V | | V _{GSS} | Gate-Sourse Voltage | D-S Short, AC frequency ≥1Hz, Note1 | -10 to 25 | V | | I _{DS} | DC Continuous Drain Current | $T_{C} = 25^{\circ}C$, $V_{GS} = +20V$ | 730 | A | | I _{DS} | DC Continuous Drain Current | T _C =60°C, V _{GS} =+20V | 620 | A | | I_{SD} | Source (Body diode) Current | T _C =25°C, with ON signal | 730 | A | | I _{SD} | Source (Body diode) Current | T _C =60°C, with ON signal | 620 | A | | I_{DSM} | Pulse Drain Current | $T_C = 25$ °C, Pulse width =1 ms, $V_{GS} = +20$ V, Note2 | 1200 | A | | P _{tot} | Total Power Dissipation | T _C =25°C | 3200 | W | | T_{jmax} | Max Junction Temperature | - | 150 | °C | | T_{stg} | Storage Temperature | - | -40 to 125 | °C | Note1: Recommended Operating Value, +20V/-6V Note2: Pulse width limited by maximum junction temperature ## **NTC characteristics** | Symbol | Parameter | C . 14. | | TT . *4 | | | |---------------------|-------------------------------|---|------|---------|------|-----------| | | | Condition | Min. | Тур. | Max. | Unit | | R ₂₅ | Resistance | $T_c=25$ °C | - | 5 | - | $k\Omega$ | | ΔR/R | Deviation of R ₁₀₀ | $T_c = 100$ °C, $R_{100} = 493\Omega$ | -5 | - | 5 | % | | P ₂₅ | Power dissipation | $T_c=25$ °C | - | - | 20 | mW | | B _{25/50} | B-value | R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))] | - | 3375 | - | K | | B _{25/80} | B-value | R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))] | - | 3411 | - | K | | B _{25/100} | B-value | R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))] | - | 3433 | - | K | ### PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module ## **MOSFET Electrical characteristics** (T_j =25°C unless otherwise specified, chip) | C | T. | Condition | | Value | | | T T •4 | | |----------------------------|---------------------------------|---|---|-----------------------|------|-------|---------------|-----| | Symbol | Item | | | Min. | Тур. | Max | Unit | | | V _{(BR)DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0V, I_D = 1mA$ | | | 2200 | - | - | V | | I _{DSS} | Zero gate voltage drain Current | V _{DS} =2200V, V _{GS} =0V | | | - | - | 300 | μА | | V _{GS(th)} | Gate-source threshold Voltage | I _D =250mA, V _{DS} =10V | | | 3.5 | 4.5 | 5.5 | V | | I_{GSS} | Gate-Source Leakage Current | $V_{GS} = 25V / -10V, V_{DS} = 0V$ | | | - | - | ±600 | nA | | P (Chin) | Static drain-source | I _D =600A | T _j =25°C | | - | 2.8 | - | mΩ | | $R_{DS(on)}(Chip)$ | On-state resistance | $V_{GS} = +20V$ | T _j =150°0 | C | | 5.7 | 8.1 | mΩ | | V (Chin) | Static drain-source | I _D =600A | T _j =25°C | | | 1.68 | - | V | | V _{DS(on)} (Chip) | On-state Voltage | ** *** | T _j =150°0 | C | | 3.42 | 4.86 | V | | R_{Gint} | Internal Gate Resistance | T _j =25°C | | | - | 2.7 | - | Ω | | C_{iss} | Input Capacitance | | | | - | 55 | - | nF | | C _{oss} | Output Capacitance | $V_{DS} = 1100V, V_{GS} = 0V, f = 10$ |)kHz | | - | 1.8 | - | nF | | C _{rss} | Reverse transfer Capacitance | | | | - | 0.05 | - | nF | | Q_{g} | Total gate charge | $V_{DS} = 1100V, I_{D} = 250A, V_{GS}$ | V _{DS} =1100V, I _D =250A, V _{GS} =+20V/-6V | | | 1605 | - | nC | | 4 | Turn on delevitime | T _j =25°C | | T _j =25°C | - | 151 | - | *** | | $t_{d(on)}$ | Turn-on delay time | $T_j = 150$ °C | T _j =150°C | - | 178 | - | ns | | | | D' d | 1 | | T _j =25°C | - | 39 | - | | | t_r | Rise time | | | T _j =150°C | - | 45 | - | ns | | | The Court of | $V_{\rm DD} = 1100 \text{V}$ $I_{\rm D} = 600 \text{A}$ | | T _j =25°C | - | 355 | - | | | $t_{d(off)}$ | Turn-off delay time | | | T _j =150°C | - | 321 | - | ns | | | T. H. d | $V_{GS} = +20/-6V$
$R_{gon}/R_{goff} = 0.75/3.0\Omega$ | | T _j =25°C | - | 121 | - | | | t_{f} | Fall time | Inductive load switching operation | | T _j =150°C | - | 69 | - | ns | | Г | | | | T _j =25°C | - | 18.5 | - | ,T | | \mathbf{E}_{on} | Turn-on power dissipation | non | | T _j =150°C | - | 16.5 | - | mJ | | Г | Turn-off power dissipation | | | T _j =25°C | - | 35.6 | - | | | $E_{ m off}$ | | | 7 | | - | 32.3 | - | mJ | | R _{th(j-c)} | FET Thermal Resistance | Junction to Case | | | - | 0.039 | - | K/W | | R _{th(c-f)} | Contact thermal Resistance | With thermal conductive grease, Note3 | | | - | 0.015 | - | K/W | Note3: Assumes Thermal Conductivity of grease is 0.9W/m·K and thickness is 50um. #### PRXS600HF22I4T1 2200V/600A Half Bridge SiC MOSFET Module # **Body Diode Electrical characteristics** $(T_j = 25^{\circ}C \text{ unless otherwise specified, chip})$ | Cross hal | Item | Candition | Value | | | T I 24 | | |-------------------|-----------------------------------|--|-----------------------|------|------|--------|------| | Symbol | | Condition | | Min. | Тур. | Max | Unit | | 77 | Body Diode Forward Voltage | $V_{GS} = -6V$ $I_{SD} = 600A$ | T _j =25°C | - | 2.8 | - | V | | V_{SD} | | | T _j =150°C | - | 4.5 | - | | | T _{rr} R | Reverse recovery time | $\begin{array}{c} V_{DD}\!=\!1100V, I_{D}\!=\!600A \\ V_{GS}\!=\!+20/\!\!-\!6V, \\ R_{gon}/R_{goff}\!=\!0.75/3.0\Omega \\ Inductive\ load \end{array}$ | T _j =25°C | - | 43 | - | ns | | | | | T _j =150°C | - | 32 | - | | | E_{rr} | Diode switching power dissipation | | T _j =25°C | - | 1.50 | - | mJ | | | | | T _j =150°C | - | 1.35 | - | | ## **Test Conditions** Figure 3. Switching time measure circuit Figure 4. Switching time definition 8 Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com