

1200V/600A Half Bridge SiC MOSFET Module

Description

The PRXS600HF12I5B3 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy.

Features

- \square 1200V/2.2m Ω
- □ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- Low Inductive Design
- □ Thermistor inside
- Pressfit terminal

Applications

- □ xEV Applications
- ☐ Motor Drives
- Vehicle Fast Chargers
- □ Smart-Grid / Grid-Tied Distributed Generation

Circuit Diagram

Figure 1. Out drawing & circuit diagram for PRXS600HF12I5B3

PRXS600HF12I5B3 1200V/600A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

Figure 2. Pin configuration

Module

Parameter	Conditions	Value	Unit
Isolation voltage	RMS, f =50Hz, t =1min	3.4	kV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 13	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
СТІ	-	>400	-
Module lead resistance, terminals – chip	T _C =25°C	0.2	mΩ
Mounting torque for module mounting	M5, M6	3 to 6	Nm
Weight	-	350	g

PRXS600HF12I5B3 1200V/600A Half Bridge SiC MOSFET Module

Maximum Ratings $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Conditions	Ratings	Unit
$V_{ m DSS}$	Drain-Source Voltage	G-S Short	1200	V
V _{GSS}	Gate-Sourse Voltage	D-S Short, AC frequency ≥1Hz, Note1	-11 to 23	V
I_{DS}	DC Continuous Drain Current	T _C =25°C , V _{GS} =18V	680	A
I _{DS}	DC Continuous Drain Current	T _C =85°C, V _{GS} =18V	525	A
I_{SD}	Source (Body diode) Current	T _C =25°C, with ON signal	680	A
I_{SD}	Source (Body diode) Current	T _C =85°C, with ON signal	525	A
I _{DSM}	Pulse Drain Current	T _C =85°C, Pulse width=1ms, V _{GS} =18V, Note2	1200	A
P _{tot}	Total Power Dissipation	T _C =25°C	2500	W
T_{jmax}	Max Junction Temperature	-	175	°C
T _{stg}	Storage Temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, -4V/+15V, -5V/+18V Note2: Pulse width limited by maximum junction temperature

NTC characteristics

			Value			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	$T_c = 25^{\circ}C$	-	5	-	kΩ
ΔR/R	Deviation of R100	$T_c = 100^{\circ}C, R_{100} = 493\Omega$	5	-	5	%
P ₂₅	Power dissipation	T _c =25°C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS600HF12I5B3 1200V/600A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

<i>a</i>	Item	G 144	Condition V _{GS} =0V, I _D =6mA		Value		
Symbol		Conditio			Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =6mA			-	-	V
I _{DSS}	Zero gate voltage drain Current	V _{DS} =1200V, V _{GS} =0V	V _{DS} =1200V, V _{GS} =0V		-	60	μΑ
V _{GS(th)}	Gate-source threshold Voltage	I _D =60mA, V _{DS} =V _{GS}	T _j =25°C	2.1	3.2	5.8	V
I_{GSS}	Gate-Source Leakage Current	V _{GS} =20V, V _{DS} =0V	T _j =25°C	-	-	600	nA
R _{DS(on)}	Static drain-source	I _D =600A	$T_j = 25^{\circ}C$	1.5	2.2	3.1	mΩ
(Chip)	On-state resistance	$V_{GS} = 18V$	T _j =175°C	3.5	5.4	7.2	mΩ
$V_{DS(on)}$	Static drain-source	I _D =600A	T _j =25°C	9.0	1.32	1.86	V
(Chip)	On-state Voltage	$V_{GS} = 18V$	T _j =175°C	2.1	3.24	4.32	V
Ciss	Input Capacitance			-	24	-	nF
Coss	Output Capacitance	$V_D = 850V, V_{GS} = 0V, f = 1MHz$	V _D =850V, V _{GS} =0V, f=1MHz		1.84	-	nF
Crss	Reverse transfer Capacitance		-	0.132	-	nF	
Qg	Total gate charge	V _{DD} =850V, I _D =600A, V _{GS} =	V _{DD} =850V, I _D =600A, V _{GS} =5/+18V		1140	-	nC
			T _j =25°C	-	140	-	
t _{d(on)}	Turn-on delay time		T _j =150°C	-	119	-	ns
$t_{\rm r}$	Rise time		T _j =25°C	-	104	-	ne
ч	Rise time	V _{DD} =600V	T _j =150°C	-	89	-	ns
	T 65 d-1 4:	$I_D=600A$ $V_{GS}=+15/-4V$	T _j =25°C	-	278	-	
t _{d(off)}	Turn-off delay time	$R_{G(on)} = 5.1\Omega$	T _j =150°C	-	302	-	ns
4	E 11.2	$R_{G(off)}=3.3\Omega$	T _j =25°C	-	67	-	
\mathbf{t}_{f}	Fall time	Inductive load switching	T _j =150°C	-	89	-	ns
E	m r	operation	T _j =25°C	-	29.6	-	
Eon	Turn-on power dissipation	орегилон	T _j =150°C	-	24.2	-	mJ
E _{off}	Turn off nowar dissination		T _j =25°C	-	27.2	-	mJ
Loff	Turn-off power dissipation		T _j =150°C	-	28.9	-	INJ
R _{th(j-c)}	FET Thermal Resistance	Junction to Case	Junction to Case		0.06	-	K/W
R _{th(c-f)}	Contact thermal Resistance	With thermal conductive gre	With thermal conductive grease, Note3		0.015	-	K/W

Note3: Assumes Thermal Conductivity of grease is 0.9W/m • K and thickness is 50um.

PRXS600HF12I5B3 1200V/600A Half Bridge SiC MOSFET Module

Body Diode Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Cl1	Item	Condition		Value			TT .*4
Symbol				Min.	Тур.	Max	Unit
V_{SD}	Body Diode Forward Voltage	$V_{GS} = -4V$	T _j =25°C	3.9	4.9	5.6	V
V SD		I _{SD} =600A	T _j =175°C	3.1	4.2	5.2	
т	Reverse recovery time	V _{DD} =600V, I _D =400A	T _j =25°C	-	39	-	
T _{rr}		V _{GS} =-4/+15V	T _j =150°C	-	56	-	ns
0	Reverse recovery charge	$R_{g(on)} = 5.1\Omega$	T _j =25°C	-	2.12	-	C
Qrr		$R_{g(off)}=3.3\Omega$	T _j =150°C	-	5.48	-	μC
E _{rr}	Diode switching power dissipation	Inductive load	T _j =25°C	-	0.55	-	
		switching operation	T _j =150°C	-	1.72	-	mJ

Test Conditions

Figure 3. Switching time measure circuit

Figure 4. Switching time definition

Figure 5. Switching power dissipation definition

