

1700V/400A Half Bridge SiC MOSFET Module

1

Description

The PRXS400HF17I3C2 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy.

Features

- □ Blocking voltage 1700V
- \Box R_{DS(on)} = 5.2m Ω @T_j = 25°C, V_{GS} = 15V
- ☐ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- □ Low Inductive Design
- ☐ Thermistor inside
- Pressfit terminal
- □ Copper base size: 79mmx62mm

Applications

- □ Motor Drives
- □ Servo Drives
- UPS Systems
- □ Smart-Grid/Grid-Tied Distributed Generation

Circuit Diagram

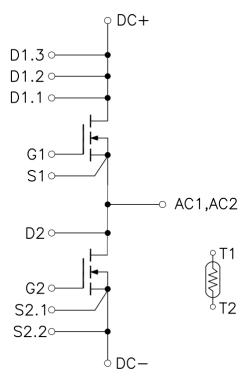


Figure 1. Out drawing & circuit diagram for PRXS400HF17I3C2

Note: Please use S2.1 for the low side drive signal and do not connect it to S2.2 which is power terminal

PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

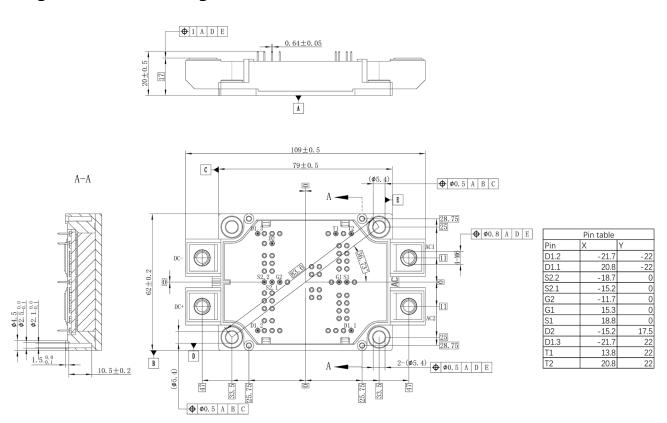


Figure 2. Pin configuration

Module

Parameter	Conditions	Value	Unit
Isolation Voltage	RMS, f =50Hz, t =1min	4.0	KV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 10	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
CTI	-	600	-
Module lead resistance, terminals-chip	T _C =25°C	0.5	mΩ
Mounting torque for module mounting	M5, M6	3 to 6	Nm
Weight	-	250	g

PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module

Maximum Ratings $(T_j = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Conditions		Unit
V _{DSS}	Drain-Source Voltage	G-S Short	1700	V
V _{GSS}	Gate-Source Voltage (+)	D-S Short	20	V
V _{GSS}	Gate-Source Voltage (-)	D-S Short	-10	V
V _{GSSSurge}	G-S Voltage(t _{surge} <300nsec)	D-S Short, Note1	-10 to 20	V
I_{DS}	DC Continuous Drain Current	$T_f = 25$ °C, $V_{GS} = 15$ V	420	A
I_{DS}	DC Continuous Drain Current	T _f =80°C, V _{GS} =15V	330	A
I_{SD}	Source (Body diode) Current	T _f =25°C, with ON signal	420	A
I _{SD}	Source (Body diode) Current	T _f =80°C, with ON signal	330	A
I _{DSM}	Pulse Forward Current	T _C =25°C, Pulse width=1ms, V _{GS} =15V, Note2	800	A
Ptot	Total Power Dissipation	T _C =25°C	2585	W
T_{jmax}	Max Junction Temperature	-	175	°C
T_{jop}	Operating junction Temperature	-	-40 to 150	°C
T_{stg}	Storage Temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, -4V/+15V, -5V/+15V Note2: Pulse width limited by maximum junction temperature

NTC characteristics

				Value		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	$T_c = 25^{\circ}C$	-	5	-	kΩ
ΔR/R	Deviation of R100	$T_c = 100$ °C, $R_{100} = 493\Omega$	5	-	5	%
P ₂₅	Power dissipation	$T_c = 25$ °C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Symbol	Item	G W		Value			T T •4
		Condition	Condition		Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =160uA		1700	-	-	V
I _{DSS}	Zero gate voltage drain Current	V _{DS} =1700V, V _{GS} =0V		-	4	160	μΑ
**		I _D =240mA	T _j =25°C	1.8	2.70	-	V
$V_{GS(th)}$	Gate-source threshold Voltage	$V_{DS} = V_{GS}$	T _j =175°C	-	1.90	-	V
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = 15V, V_{DS} = 0V, T_j = 25^{\circ}C$	C	-	-	1000	nA
R _{DS(on)}	Static drain-source	I _D =400A	T _j =25°C	-	5.2	7.5	mΩ
(Chip)	On-state resistance	$V_{GS} = 15V$	T _j =175°C	-	11.6	-	mΩ
V _{DS(on)}	Static drain-source	I _D =400A	T _j =25°C	-	2.08	3.0	V
(Chip)	On-state Voltage	$V_{GS} = 15V$	T _j =175°C	-	4.64	-	V
Ciss	Input Capacitance	11 100011 11 011	1	-	30.5	-	nF
Coss	Output Capacitance	$V_D=1000V, V_{GS}=0V$ $f=1MHz, V_{AC}=25mV$ $V_{DD}=1000V, I_D=300A, V_{GS}=-5/+15V$ $T_j=25^{\circ}C$		-	0.82	-	nF
Crss	Reverse transfer Capacitance			-	0.15	-	nF
QG	Total gate charge			-	1022	-	nC
RGint	Internal Gate Resistance			-	0.48	-	Ω
			T _j =25°C	-	165	-	
t _{d(on)}	Turn-on delay time		T _j =150°C	-	129	-	ns
	D' '		T _j =25°C	-	123	-	
t_r	Rise time	V _{DD} =900V	T _j =150°C	-	93	-	ns
	T	I _D =400A	T _j =25°C	-	515	-	
t _{d(off)}	Turn-off delay time	$V_{GS} = +15/-4V$ $R_{G(on)} = 6.8\Omega$	T _j =150°C	-	646	-	ns
	F 11.2	$R_{G(on)}=0.82$ $R_{G(off)}=6.8\Omega$	T _j =25°C	-	80	-	
t_{f}	Fall time	Inductive load switching	T _j =150°C	-	102	-	ns
Б		operation	T _j =25°C	-	48.4	-	
E _{on} T	Turn-on power dissipation	operation	T _j =150°C	-	40.7	-	mJ
Е	T CC 1:		T _j =25°C	-	46.1	-	,
Eoff	Turn-off power dissipation	power dissipation $T_j = 150^{\circ}C$	T _j =150°C	-	49.6	-	mJ
R _{th(j-c)}	FET Thermal Resistance	Junction to Case	Junction to Case		0.058	-	K/W
R _{th(c-f)}	Contact thermal Resistance	With thermal conductive grease, Note4		-	0.015	-	K/W

Note3: Assumes Thermal Conductivity of grease is 0.9W/m • K and thickness is 50um.

PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module

Body Diode Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Cl1	Item	Condition		Value			T T *4
Symbol				Min.	Тур.	Max	Unit
	Dady Diada Famyand Valtage	$V_{GS} = -4V$	T _j =25°C	-	5.5	-	V
V_{SD}	Body Diode Forward Voltage	I _{SD} =400A	T _j =150°C	-	5.2	-	V
	Davience necessary time	V _{RR} =900V, I _D =400A	T _j =25°C	-	46	-	
Trr	Reverse recovery time	MOSFET side:	T _j =150°C	-	147	-	ns
	D	$V_{GS} = +15/-4V$	T _j =25°C	-	2.2	-	C
Qrr	Reverse recovery charge	$R_{G(on)} = R_{G(off)} = 6.8\Omega$	T _j =150°C	-	11.1	-	uC
		Inductive load	T _j =25°C	-	0.5	-	
Err	Diode switching power dissipation	switching operation	T _j =150°C	-	4.6	-	mJ

Test Conditions

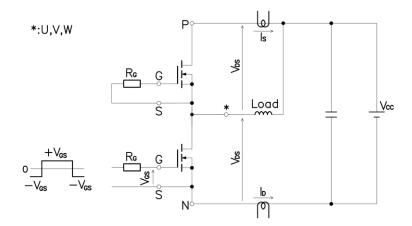


Figure 3. Switching time measure circuit

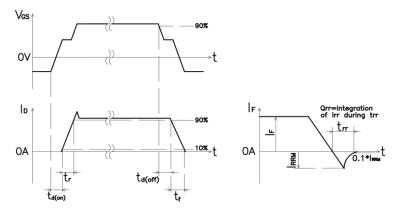
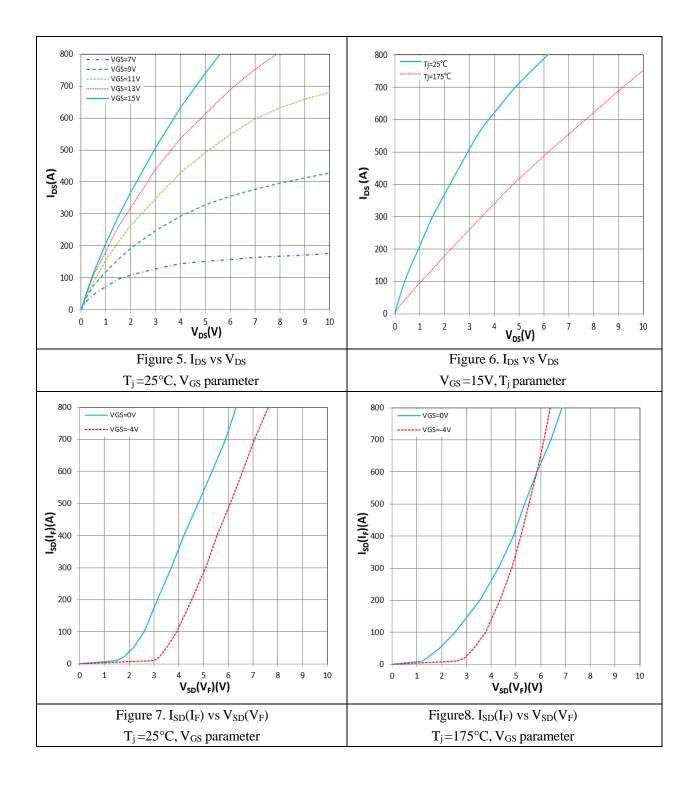
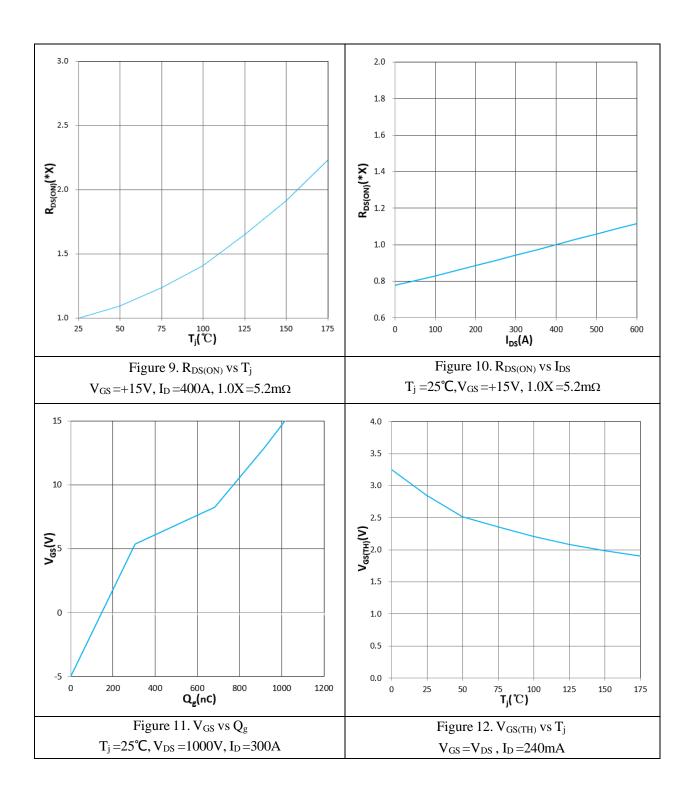
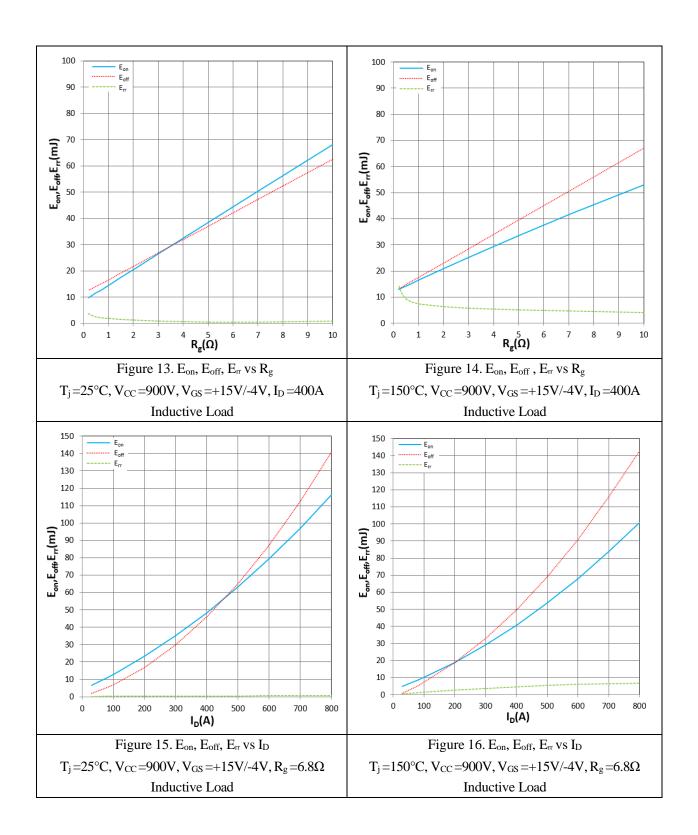



Figure 4. Switching time definition



PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module



PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module

PRXS400HF17I3C2 1700V/400A Half Bridge SiC MOSFET Module

