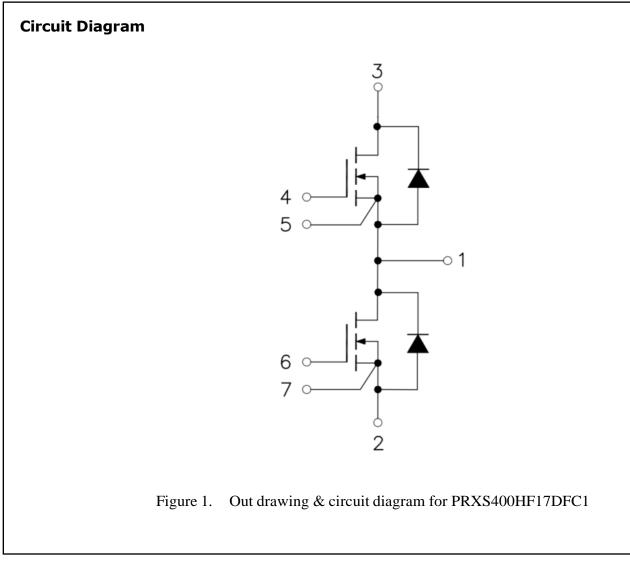


PRXS400HF17DFC1

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

1700V/400A Half Bridge SiC MOSFET Module

Description


The PRXS400HF17DFC1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips and SiC Diode designed for the applications such as Motor drives and Renewable energy.

Features

- □ Blocking voltage:1700V
- $\Box R_{ds(on)} = 4.3 m \Omega$
- □ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- □ 62mm half bridge module

Applications

- Motor Drives
- $\hfill\square$ Solar and Wind inverter Systems
- □ Renewable energy
- UPS

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

PRXS400HF17DFC1 1700V/400A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

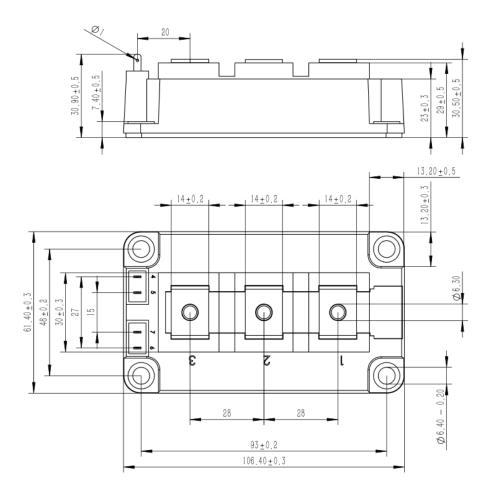


Figure 2. Pin configuration

Module

Parameter	Conditions	Value	Unit
Isolation Voltage	RMS, f=50Hz, t=1min	4.0	kV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 10	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
CTI	-	>400	-
Module lead resistance, terminals – chip	$T_C = 25^{\circ}C$	0.6	mΩ
Mounting torque for module mounting	M6	4 to 6	Nm
Weight	-	320	g

PRXS400HF17DFC1 1700V/400A Half Bridge SiC MOSFET Module

Symbol	Parameter	Condition	Ratings	Unit
V _{DSS}	Drain-Source Voltage	G-S Short	1700	V
V _{GSS}	Gate-Sourse Voltage	D-S Short, AC frequency ≥1Hz, Note1	-10 to 20	V
I _{DS}	DC Continuous Drain Current	$T_{C} = 25^{\circ}C$, $V_{GS} = +15V$	500	А
I _{DS}	DC Continuous Drain Current	$T_{C} = 80^{\circ}C, V_{GS} = +15V$	400	А
I _{SD}	Source-Drain Current(diode)	$T_{\rm C}$ =25°C, with ON signal	500	А
I _{SD}	Source-Drain Current(diode)	$T_{\rm C}$ =80°C, with ON signal	400	А
I _{DSM}	Pulse Drain Current	$T_{C} = 25^{\circ}C$, Pulse width =1ms, $V_{GS} = +15V$, Note2	800	А
P _{tot}	Total Power Dissipation	$T_c = 25^{\circ}C$	2020	W
T _{jmax}	Max Junction Temperature	-	175	°C
T _{stg}	Storage Temperature	-	-40 to 125	°C

Maximum Ratings ($T_j = 25^{\circ}C$ unless otherwise specified)

Note1: Recommended Operating Value, -4V/+15V, -5V/+15V Note2: Pulse width limited by maximum junction temperature

Diode Electrical characteristics	(T _j =25°C unless otherwise specified	chip)
---	--	-------

					Value				
Symbol	Cond	Condition		Min.	Тур.	Max	Unit		
37	Diada Farmand Waltana		T _i =25°C	T _i =25°C		1.65	-		
$V_{\rm F}$	Diode Forward Voltage	$I_{\rm F} = 400 \text{A}, V_{\rm GS} = 0 \text{V}$ $T_{\rm i} = 175$		С	-	2.55	-	V	
		(Switch side)		$T_j = 25^{\circ}C$	-	27	-		
t _{rr}	Diode Reverse Recovery Time	$V_{DD} = 900V, I_{D} = 400A$		T _i =150°C	-	38	-	ns	
-		$V_{GS} = +15V/-4V$		T _i =25°C	_	77	-		
I _{RM}	Peak reverse recovery Current	$R_{gon}\!/R_{goff}\!=\!\!2.2\Omega/2.2\Omega$	$_{\rm gonf}/R_{\rm goff}=2.2\Omega/2.2\Omega$	T _i =150°C	-	165	-	А	
0	Deserved shares	(FRD side)		T _i =25°C	-	1.18	-		
Q _{rr}	Recovered charge	V _{RR} =900V, I _F =400A		T _i =150°C	-	3.12	-	uC	
		V _{GE} =+15V/-4V		T _i =25°C	-	0.4	-		
E_{rr}	E _{rr} Reverse recovered energy	Inductive load switching operation		T _j =150°C	-	0.6	-	mJ	
R _{th(j-c)}	Thermal Resistance, Junction to Case (Diode)			-	0.056	-	°C/W		

PRXS400HF17DFC1 1700V/400A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

				Value			TT .•4	
Symbol	Item	Condition			Min.	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 400 \mu A$			1700	-	-	V
I _{DSS}	Zero gate voltage drain Current	V _{DS} =1200V, V _{GS} =0V			-	4	-	μΑ
		$I_D = 240 \text{mA}, V_{DS} = V_{GS}$ $\frac{T_j = 25^{\circ}}{T_j = 175}$			1.8	2.7	-	v
V _{GS(th)}	Gate-source threshold Voltage			С	-	1.9	-	V
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V$	T _j =25°C	1	-	25	-	nA
	Static drain-source	I _D =400A	T _j =25°C	l ,	-	4.3	-	mΩ
R _{DS(on)} (Chip)	On-state resistance	$V_{GS} = 15V$	T _j =175°	С	-	7.1	-	mΩ
	Static drain-source	I _D =400A	$T_j = 25^{\circ}C$	T _i =25°C		1.72	-	v
V _{DS(on)} (Chip)	On-state Voltage	$V_{GS} = 15V$	T _j =175°	T _j =175°C		2.84	-	V
C _{iss}	Input Capacitance		·		-	30480	-	pF
C _{oss}	Output Capacitance	$V_D = 1000V, V_{GS} = 0V$ f=1MHz, $V_{AC} = 25mV$			-	820	-	pF
C _{rss}	Reverse transfer Capacitance	$1 - 100 \text{ mmz}, v_{AC} - 23 \text{ mv}$			-	151	-	pF
R _{Gint}	Internal gate resistor	$f=1MHz, V_{AC}=25mV$		-	1.7	-	Ω	
Q_{g}	Total gate charge	V_{DD} =1000V, I_{D} =300A, V_{GS} =+15/[]4V			-	1030	-	nC
				T _j =25°C	-	118	-	
$t_{d(on)}$	Turn-on delay time		$T_j = 1$	T _j =150°C	-	108	-	ns
				T _j =25°C	-	68	-	
t _r	Rise time			T _j =150°C	-	58	-	ns
		$V_{DD} = 900V \\ I_{D} = 400A \\ V_{GS} = +15/-4V \\ R_{gon}/R_{goff} = 2.2\Omega/2.2\Omega$		T _j =25°C	-	232	-	ns
t _{d(off)}	t _{d(off)} Turn-off delay time			T _j =150°C	-	261	-	
				T _j =25°C	-	60	-	
t _f Fall time	Inductive load switching operation		T _j =150°C	-	64	-	ns	
E _{on} Turn-on power dissipation	Turn on normality in the			$T_j = 25^{\circ}C$	-	27.9	-	mJ
	i urn-on power dissipation			T _j =150°C	-	23.7	-	
E _{off} Turn-o	Turn off a sure line of			T _j =25°C	-	12.9	-	Ŧ
	Turn-off power dissipation			T _j =150°C	-	13.6	-	mJ
R _{th(j-c)}	FET Thermal Resistance	Junction to Case		-	0.074	-	°C /W	

PRXS400HF17DFC1 1700V/400A Half Bridge SiC MOSFET Module

Test Conditions

Figure 3. Switching time measure circuit

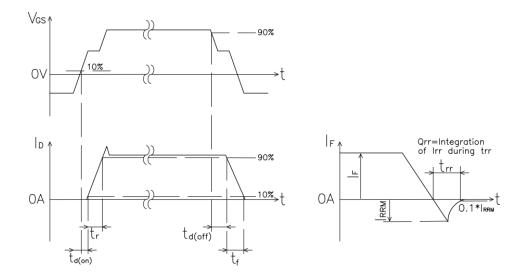
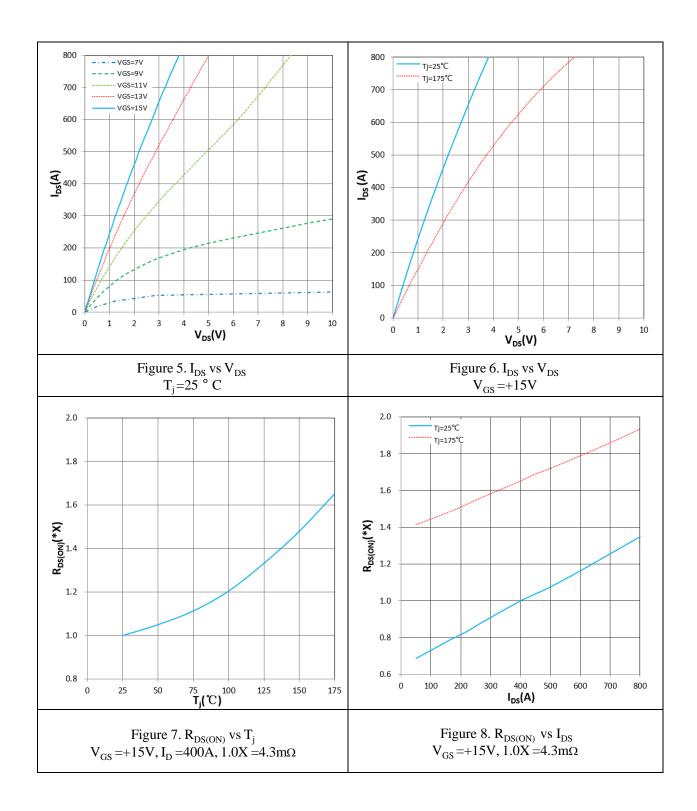
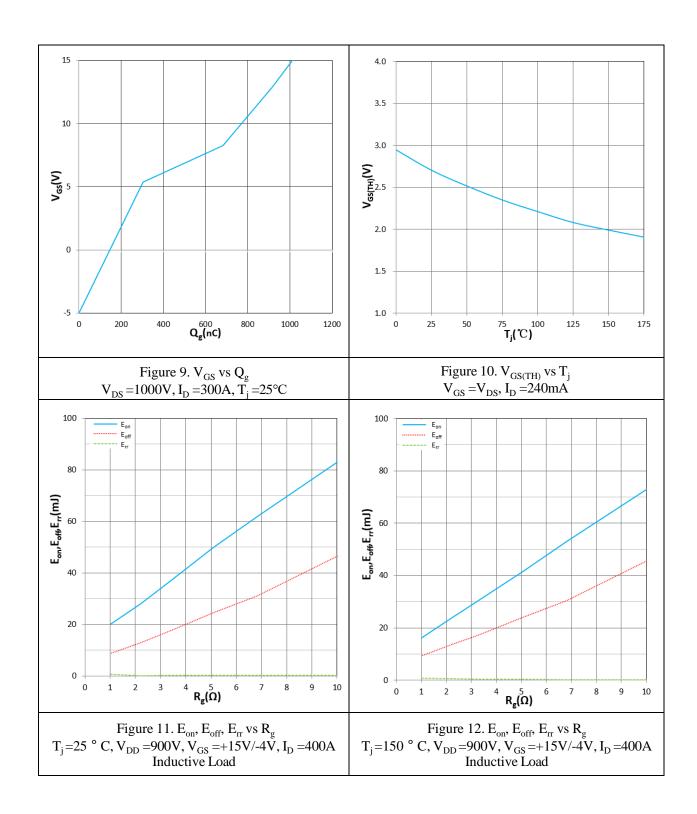



Figure 4. Switching time definition

PRXS400HF17DFC1

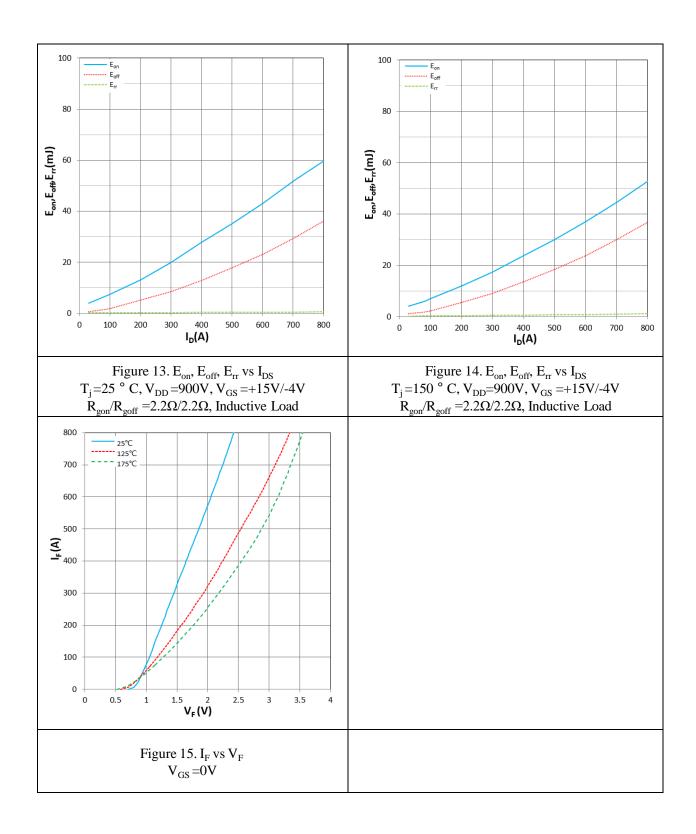
1700V/400A Half Bridge SiC MOSFET Module



Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

PRXS400HF17DFC1

1700V/400A Half Bridge SiC MOSFET Module



05/24 Rev 0

PRXS400HF17DFC1

1700V/400A Half Bridge SiC MOSFET Module

