

1200V/400A Half Bridge SiC MOSFET Module

Description

The PRXS400HF12DFQ1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips and SiC Diode designed for the applications such as Motor drives and Renewable energy

Features

- □ Blocking voltage: 1200V
- $\Box \quad \mathsf{R}_{\mathsf{DS}(\mathsf{on})} = 4.8\mathsf{m}\Omega$
- ☐ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- □ 62mm half bridge module
- Low Switching Losses

Applications

- ☐ Motor Drives
- □ Vehicle Fast Chargers
- □ Renewable energy
- □ UPS

Circuit Diagram

Figure 1. Out drawing & circuit diagram for PRXS400HF12DFQ1

PRXS400HF12DFQ1 1200V/400A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

Figure 2. Pin configuration

PRXS400HF12DFQ1 1200V/400A Half Bridge SiC MOSFET Module

Module

Parameter	Conditions	Value	Unit
Isolation Voltage	RMS, f =50Hz, t =1min	4.0	kV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 10	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
CTI	-	>400	-
Module lead resistance, terminals – chip	T _C =25°C	0.6	mΩ
Mounting torque for module mounting	M6	4 to 6	Nm
Weight	-	320	g

Maximum Ratings $(T_j = 25^{\circ}\text{C unless otherwise specified})$

Symbol	Parameter	Condition	Ratings	Unit
$V_{ m DSS}$	Drain-Source Voltage	G-S Short	1200	V
V _{DS nom}	Continuous Operating DC Voltage	Not include surge voltage	1100	V
V _{GSS}	Gate-Source Voltage	D-S Short, AC frequency ≥1Hz, Note1	-10 to 25	V
I_{DS}	DC Continuous Drain Current	$T_C=25$ °C, $V_{GS}=20$ V	460	A
I _{DS}	DC Continuous Drain Current	$T_C = 80^{\circ}C, V_{GS} = 20V$	370	A
I_{DP}	Drain Pulse Current, Peak	T _C =25°C, Less than 1ms, Note2	800	A
I_{F}	Forward Current	T _C =25°C, with ON signal	450	A
I_{F}	Forward Current	T _C =80°C, with ON signal	350	A
I _{FRM}	Pulse Forward Current	T _C =25°C, Less than 1ms, Note2	800	A
P _{tot}	Total Power Dissipation	T _C =25°C	2142	W
T _{jmax}	Max Junction Temperature	-	175	°C
T _{stg}	Storage Temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, +20V/-5V, +18V/-5V, +15V/-4V

Note2: Pulse width limited by maximum junction temperature

PRXS400HF12DFQ1 1200V/400A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

					Value		
Symbol	Item	Conditi	Condition		Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS}=0V$, $I_D=4mA$		Min. 1200	-	-	V
I _{DSS}	Zero gate voltage drain Current	V _{DS} =1200V, V _{GS} =0V		-	4	-	μΑ
**		I 00 A M M	$T_j = 25$ °C	1.8	2.5	4.0	V
$V_{GS(th)}$	Gate-source threshold Voltage	$I_D=80$ mA, $V_{DS}=V_{GS}$	T _j =175°C	-	1.6	-	V
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V$	T _j =25°C	-	100	800	nA
		I _D =400A	T _j =25°C	-	4.8	-	mΩ
R _{DS(on)}	Static drain-source	$V_{GS}=20V$	T _j =175°C	-	9.3	-	mΩ
(Chip)	On-state resistance	I _D =400A	T _j =25°C	-	5.4	-	mΩ
		$V_{GS} = 18V$	T _i =175°C	_	9.7	_	mΩ
		I _D =400A	T _j =25°C	-	1.9	-	V
$V_{DS(on)}$	Static drain-source	$V_{GS}=20V$	T _j =175°C	-	3.7	-	V
(Chip)	On-state Voltage	I _D =400A	T _j =25°C	-	2.2	-	V
	and states it states	$V_{GS} = 18V$	T _j =175°C	-	3.9	-	V
Ciss	Input Capacitance		L	-	25.3	-	пF
Coss	Output Capacitance	V _D =800V, V _{GS} =0V, f=100kHz, V _{AC} =25mV		-	1.44	-	nF
Crss	Reverse transfer Capacitance			-	0.15	-	nF
QG	Total gate charge	V _{DD} =800V, I _D =200A, V _{GS}	V _{DD} =800V, I _D =200A, V _{GS} =+20/-5V		865	-	nC
R _{Gint}	Internal Gate Resistance	T _j =25°C		-	1.5	-	Ω
			T _j =25°C	-	46	-	
$t_{d(on)}$	Turn-on delay time		T _j =150°C	-	43	-	ns
			T _j =25°C	-	36	-	
$t_{\rm r}$	Rise time	$V_{DD}=600V$	T _j =150°C	-	32	-	ns
	- m.i.	I _D =400A	T _j =25°C	-	34	-	
$t_{\rm d(off)}$	Turn-off delay time	$V_{GS} = +18/-5V$	T _j =150°C	-	45	-	ns
,	T. W. c	$R_{G(on)}=3.3\Omega$ $T_j=25^{\circ}C$	T _j =25°C	-	18	-	
t_{f}	Fall time	$R_{G(off)}=3.3\Omega$	T _j =150°C	-	21	-	ns
D	T 1:	Inductive load switching	T _j =25°C	-	7.5	-	- mJ
Eon	Turn-on power dissipation	operation	T _j =150°C	-	10.4	-	
E	Turn-off power dissipation		T _j =25°C	-	2.5	-	Т
Eoff			T _j =150°C	-	4.4	-	mJ
R _{th(j-c)}	FET Thermal Resistance	Junction to Case		-	0.07	-	°C/W

PRXS400HF12DFQ1 1200V/400A Half Bridge SiC MOSFET Module

SiC SBD Electrical characteristics (T_i =25°C unless otherwise specified, chip)

		Condition		Value			
Symbol	Item			Min.	Тур.	Max	Unit
V_{F}	Di-d-E	In =400 A V as = 4V	T _j =25°C	-	1.90	-	37
V F	Diode Forward Voltage	$I_F = 400A, V_{GS} = -4V$	T _j =175°C	-	3.35	-	V
4	t _{rr} Diode Reverse Recovery Time		$T_j = 25^{\circ}C$	-	27	-	
L _{IT}		V _{RR} =600V, I _D =400A	T _j =150°C	-	29	-	ns
T		MOSFET side:	T _j =25°C	-	156	-	
I _{RM}	I _{RM} Peak reverse recovery Current	$V_{GS} = +18/-5V$	T _j =150°C	-	189	-	A
0	D 1.1	$R_{G(on)} = R_{G(off)} = 3.3\Omega$	T _j =25°C	-	2.5	-	G
Q _{rr} Rec	Recovered charge	Inductive load	T _j =150°C	-	3.4	-	μC
E	D. I	switching operation	T _j =25°C	-	0.5	-	7
E _{rr}	Reverse recovered energy		T _j =150°C	-	1.7	-	mJ
R _{th(j-c)}	Thermal Resistance, Junction to Case (Diode)		-	0.09	-	°C/W	

Test Conditions

Figure 3. Switching time measure circuit

Figure 4. Switching time definition

