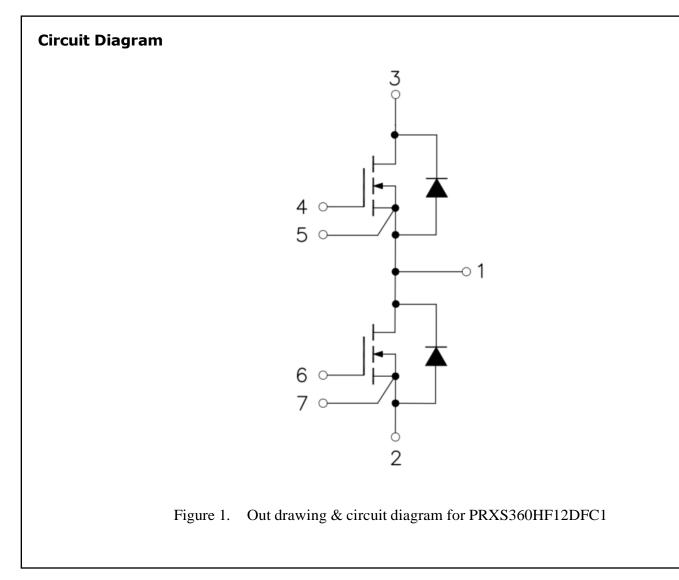


PRXS360HF12DFC1

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

1200V/360A Half Bridge SiC MOSFET Module

Description


The PRXS360HF12DFC1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips and SiC Diode designed for the applications such as Motor drives and Renewable energy.

Features

- \Box 1200V/5.3m Ω (V_{GS} = 15V), 4.3 m Ω (V_{GS} = 18V)
- $\hfill\square$ Low thermal resistance with Si_3N_4 AMB
- □ 175°C maximum junction temperature
- □ Zero Reverse Recovery from Diodes
- □ 62mm half bridge module

Applications

- □ Motor Drives
- Vehicle Fast Chargers
- □ Renewable energy
- □ UPS

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

PRXS360HF12DFC1 1200V/360A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

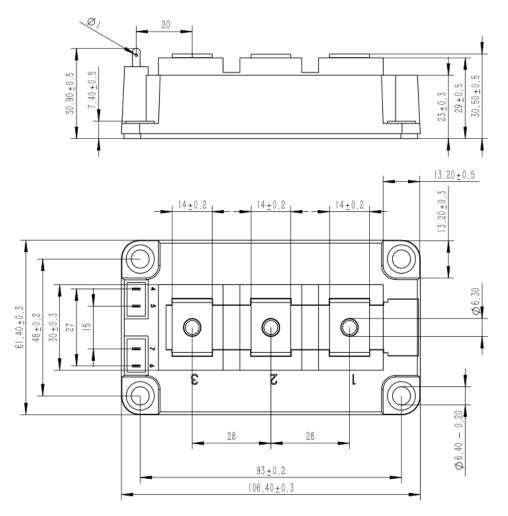


Figure 2. Pin configuration

Module

Parameter	Conditions	Value	Unit
Isolation Voltage	RMS, f =50Hz, t =1min	4.0	KV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 10	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
СТІ	-	>400	-
Module lead resistance, terminals – chip	$T_C = 25^{\circ}C$	0.3	mΩ
Mounting torque for module mounting	M6	4 to 6	Nm
Weight	-	300	g

PRXS360HF12DFC1 1200V/360A Half Bridge SiC MOSFET Module

Maximum Ratings ($T_j = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{DSS}	Drain-Source Voltage	G-S Short	1200	V
V _{GSS}	Gate-Sourse Voltage	D-S Short, AC frequency ≥ 1 Hz, Note1	-10 to 22	V
IDS	DC Continuous Drain Current	$T_C = 25^{\circ}C$, $V_{GS} = +15V$	450	А
IDS	DC Continuous Drain Current	$T_{C} = 90^{\circ}C$, $V_{GS} = +15V$	345	А
Isd	Source-Drain Current(diode)	$T_C = 25^{\circ}C$, with ON signal	500	А
I _{SD}	Source-Drain Current(diode)	$T_C = 90^{\circ}C$, with ON signal	370	А
I _{DSM}	Pulse Drain Current	T _C =25°C, Pulse width=1ms, V _{GS} =+15V, Note2	800	А
Ptot	Total Power Dissipation	T _c =25°C	1575	W
T _{jmax}	Max Junction Temperature	-	175	°C
T _{stg}	Storage Temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, +18V/-5V, +15V/-4V Note2: Pulse width limited by maximum junction temperature

Diode Electrical characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified, chip})$

					Value		
Symbol	Item	Condition		Min.	Тур.	Max	Unit
V _F	Diada Formand Valtage	I _F =360A, V _{GE} =0V	$T_j = 25^{\circ}C$	-	1.75	-	V
v F	Diode Forward Voltage	$I_{\rm F} = 300 {\rm A}, \ V_{\rm GE} = 0 {\rm V}$	$T_j \!=\! 150^\circ C$	-	2.35	-	v
t _{rr} Diode Reverse Recovery Time	(Switch side)	$T_j = 25^{\circ}C$		26		ns	
	V _{CC} =600V, I _C =360A	$T_j = 150^{\circ}C$		52			
	$V_{GE} = +15V/-4V$	$T_j = 25^{\circ}C$	-	261	-		
I _{RM}	I _{RM} Peak reverse recovery Current	R_{gon}/R_{goff} = 3.3 Ω /3.3 Ω	$T_j = 150^{\circ}C$	-	342	-	А
	Q _{rr} Recovered charge	(FRD side)	Tj=25°C	-	4.5	-	
Qn		Vn=600V, IF=360A	$T_j = 150^{\circ}C$	-	5.8	-	uC
		V _{GE} =+15V/-4V	$T_j = 25^{\circ}C$	-	1.1	-	
E _{rr} Reverse rec	Reverse recovered energy	Inductive load switching operation	$T_j = 150^{\circ}C$	-	2.1	-	mJ
Rth(j-c)	Thermal Resistance, Junction to Case (Diode)		-	0.085	-	°C/W	

PRXS360HF12DFC1 1200V/360A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

	-				Value		
Symbol	Item	Condition		Min.	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =400uA		1200	-	-	V
I _{DSS}	Zero gate voltage drain Current	V _{DS} =1200V, V _{GS} =0V		-	4	-	μΑ
$V_{GS(th)}$	Gate-source threshold Voltage	$I_D=140 \text{mA}, V_{DS}=V_{GS}$	$T_j = 25^{\circ}C$	1.8	2.7	-	V
Igss	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V$	$T_j = 25^{\circ}C$	-	-	400	nA
		I _D =360A	$T_j = 25^{\circ}C$	-	5.3	-	mΩ
R _{DS(on)}	Static drain-source	V_{GS} =+15V	$T_j = 175^{\circ}C$	-	7.5	-	mΩ
(Chip)	On-state resistance	I _D =360A	$T_j = 25^{\circ}C$	-	4.3	-	mΩ
		$V_{GS} = +18V$	$T_j = 175^{\circ}C$	-	6.4	-	mΩ
		ID=360A	$T_j = 25^{\circ}C$	-	1.91	-	V
V _{DS(on)} Static drain-source	$V_{GS} = +15V$	$T_j = 175^{\circ}C$	-	2.70	-	V	
(Chip)	On-state Voltage	ID=360A	$T_j = 25^{\circ}C$	-	1.55	-	V
	$V_{GS} = +18V$	$T_j = 175^{\circ}C$	-	2.30	-	V	
Ciss	Input Capacitance	$V_{D} = 800V, V_{GS} = 0V,$ f = 100kHz, V _{AC} = 25mV f = 100kHz, V _{AC} = 25mV		-	23.3	-	nF
Coss	Output Capacitance			-	0.70	-	nF
Crss	Reverse transfer Capacitance			-	57	-	pF
R _{Gint}	Internal gate resistor			-	0.5	-	Ω
Qg	Total gate charge	$V_{DD} = 800V, I_D = 360A, V_{GS}$	=+15/-4V	-	750	-	nC
			$T_j = 25^{\circ}C$	-	56	-	ns
t _{d(on)}	Turn-on delay time		$T_j = 150^{\circ}C$	-	49	-	
			$T_j = 25^{\circ}C$	-	33	-	
tr	Rise time	V _{DD} =600V	$T_j = 150^{\circ}C$	-	27	-	ns
t _{d(off)} Turn-off delay time		ID=360A	T _j =25°C	_	119	-	
	$V_{GS} = +15/-4V$	T ₁ =150°C	_	131	_	ns	
		$R_{gon}/R_{goff}=3.3\Omega/3.3\Omega$	$T_j = 25^{\circ}C$	-	37	_	
t _f Fall time	Fall time	Inductive load switching	T _j =150°C	-	48	-	ns
E _{on} Turn-on power dissipation		operation	$T_j = 25^{\circ}C$	-	7.1	-	
	Turn-on power dissipation		$T_j = 150^{\circ}C$	-	6.6	-	mJ
E _{off} Turn-off power dissipation			$T_j = 25^{\circ}C$	-	5.6		
	urn-off power dissipation		$T_j = 150^{\circ}C$	-	6.1	-	mJ
R _{th(j-c)}	FET Thermal Resistance	Junction to Case	1	-	0.095	-	°C /W

PRXS360HF12DFC1 1200V/360A Half Bridge SiC MOSFET Module

Test Conditions

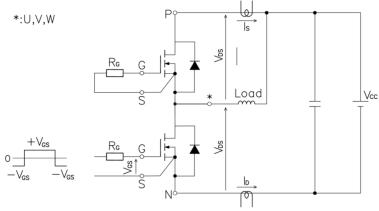
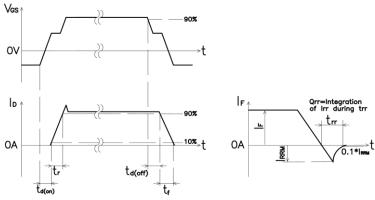
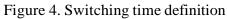
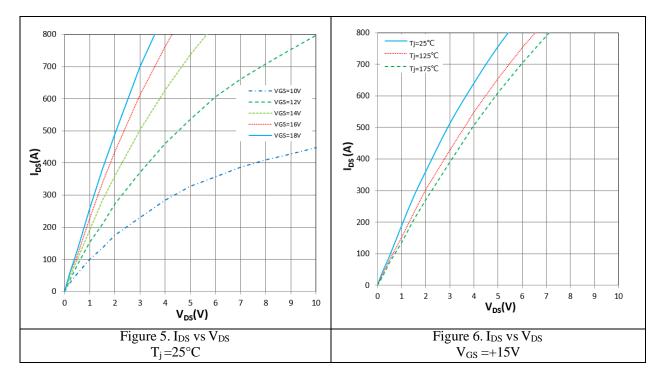
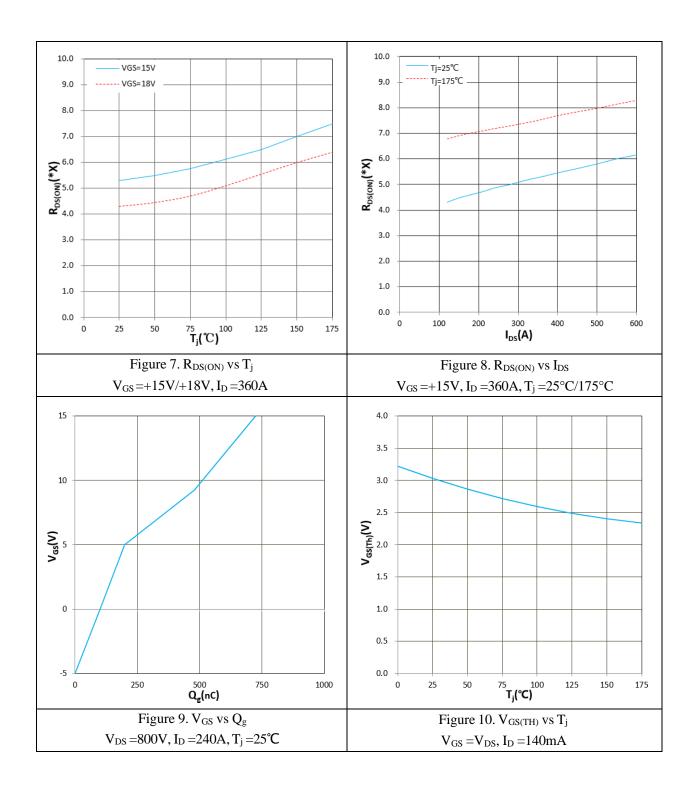





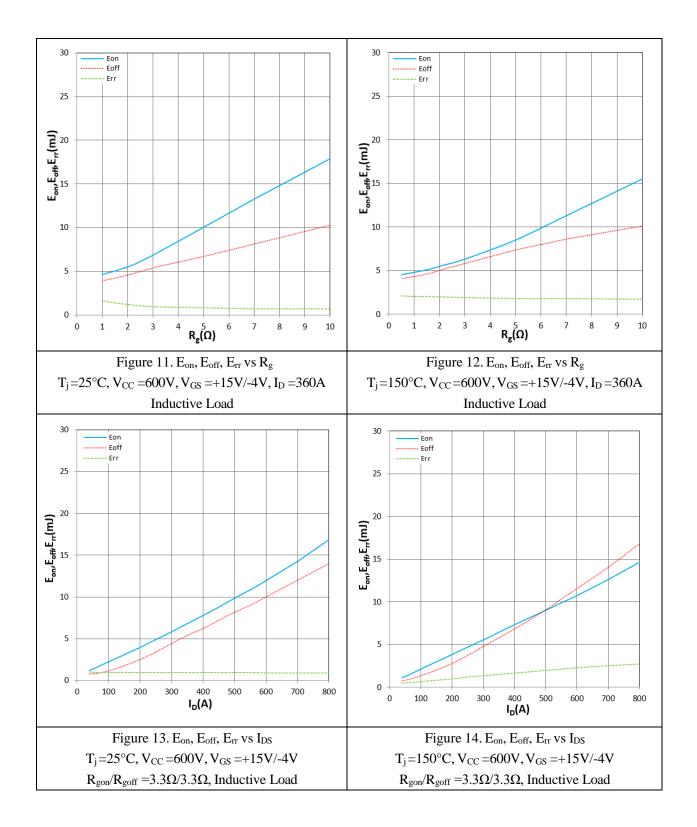
Figure 3. Switching time measure circuit



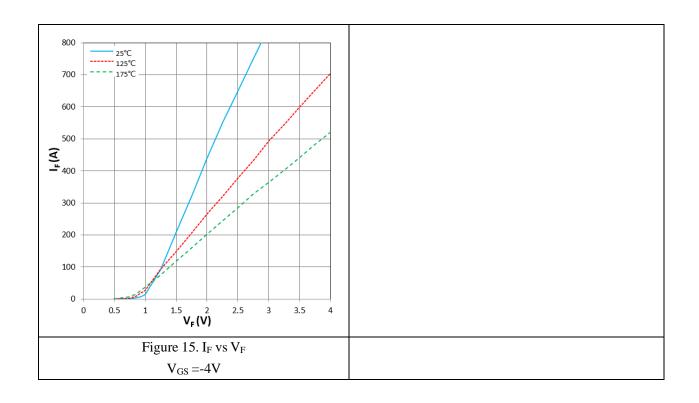
Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

PRXS360HF12DFC1

1200V/360A Half Bridge SiC MOSFET Module



PRXS360HF12DFC1


04/24 Rev 0

1200V/360A Half Bridge SiC MOSFET Module

PRXS360HF12DFC1 1200V/360A Half Bridge SiC MOSFET Module

