

1200V/800A 3 Phase SiC MOSFET Module

1

Description

The PRXS02FB12HDB1 is a 3 Phase SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips for xEV or motor drives application.

Features

- □ Blocking voltage 1200V
- \square R_{DS(on)} = 1.7m Ω (T_j = 25°C)
- □ Arcbonding[™] technology
- ☐ 175°C maximum junction temperature
- ☐ Si₃N₄ AMB substrate
- □ Direct Cooled Pin Fin Base Plate
- ☐ Thermistor inside
- □ Press FIT Contact Technology

Applications

- □ xEV Applications
- ☐ Motor Drives

Figure 1. Out drawing & circuit diagram for PRXS02FB12HDB1

PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module

Physical Dimensions

Figure 2. Physical Dimensions

PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module

Maximum Ratings (T_i = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V_{DSS}	Drain-Source Voltage	G-S Short	1200	V	
V _{GSS}	Gate-Source Voltage	D-S Short, AC frequency ≥1Hz, Note1	-11V/+23V	V	
I_{DS}	DC Continuous Drain Current	T _f =25°C	685	A	
I _{DS}	DC Continuous Drain Current	T _f =65°C	590	A	
I_{SD}	Source (Body Diode) Current	T _f =25°C, with ON signal	685	A	
I_{SD}	Source (Body Diode) Current	T _f =65°C, with ON signal	590	A	
I_{DP}	Drain Pulse Current, Peak	Less than 1ms, Note2	1600	A	
P_D	Maximum Power Dissipation	T_f =25°C	1923	W	
T_{j}	junction temperature	-	-40 to 175	°C	
T_{stg}	Storage temperature	-	-40 to 125	°C	

Note1: Recommended Operating Value: -4V/+15V, -5V/+18V Note2: Pulse width limited by maximum junction temperature

Typical Current Output Ability

Condition: SPWM control, $V_{CC}=800V$, $R_{g(ON)}=R_{g(OFF)}=5\Omega$, $T_f=65^{\circ}C$, $T_{jmax}=175^{\circ}C$, PF=0.8, Modulation rate = 1

Note3: This graph is calculated value for reference based on the limitation of T_{jmax} =175°C. The actual current out ability depends on inverter electrical, thermal and mechanic design. Please confirm it in actual application system.

PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module

Module

Parameter Conditions		Value	Unit	
Isolation voltage	Main terminal to base plate, f =0Hz, t =1sec	4.2	kV	
Material of module baseplate	-	Cu+Ni	-	
Creepage distance	terminal to heatsink terminal to terminal	9	mm	
Clearance	terminal to heatsink terminal to terminal	4.5	mm	
Stray inductance module	$T_f = 65^{\circ}C$	8	nН	
Module lead resistance, terminals – chip	T _f =65°C	0.2	mΩ	
Mounting torque for module mounting	Screw M4 baseplate to heatsink	1.8 to 2.2	Nm	
Weight	-	798	g	

NTC characteristics

	Parameter		Value			
Symbol		Condition	Min.	Тур.	Max.	Unit
R ₂₅	Resistance	$T_c = 25^{\circ}C$	-	5	-	$k\Omega$
ΔR/R	Deviation of R100	$T_c = 100^{\circ}C, R_{100} = 493\Omega$	5	-	5	%
P ₂₅	Power dissipation	T _c =25°C	-	-	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	-	3375	-	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	-	3411	-	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Gl1	T.,	G 188	G 11/1		Value		
Symbol	Item Condition		Min.	Тур.	Max	Unit	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =8mA		1200	-	-	V
I _{DSS}	Zero gate voltage drain current	V _{DS} =1200V, V _{GS} =0V		-	-	80	μΑ
$V_{GS(th)}$	Gate-source threshold voltage	$I_D = 80 \text{mA}, V_{DS} = V_{GS}$		2.1	-	5.8	V
I_{GSS}	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V, T_j = 25$	5°C	-	-	10	μΑ
R _{DS(on)}	Static drain-source	I _D =800A	T _j =25°C	1.1	1.7	2.3	mΩ
(Chip)	On-state resistance	$V_{GS} = 18V$	T _j =175°C	2.6	4.0	5.4	mΩ
V _{DS(on)}	Static drain-source	I _D =800A	T _j =25°C	-	1.34	1.84	V
(Chip)	On-state voltage	$V_{GS} = 18V$	T _j =175°C	-	3.24	4.33	V
Ciss	Input capacitance	V _{DS} =850V		-	32	-	nF
Coss	Output capacitance	V _{GS} =0V		-	1.84	-	nF
Crss	Reverse transfer capacitance	f=1MHz	-	0.176	-	nF	
Q _G	Total gate charge	V _{DD} =850V, I _D =800A, V _O	$V_{DD} = 850 V, I_D = 800 A, V_{GS} = -5/+18 V$			-	nC
			T _j =25°C	-	160	-	
t _{d(on)}	Turn-on delay time		T _j =150°C	-	140	-	ns
		V _{DD} =600V	T _j =25°C	-	125	-	
$t_{\rm r}$	Rise time		T _j =150°C	-	110	-	ns
		$I_{\rm D} = 800 {\rm A}$	T _j =25°C	-	340	-	
$t_{d(off)}$	Turn-off delay time	$V_{GS} = +15/-4V$	T _j =150°C	-	385	-	ns
		$R_{G(ON)} = 5\Omega$	T _j =25°C	-	85	-	
\mathbf{t}_{f}	Fall time	$R_{G(OFF)} = 5\Omega$	T _j =150°C	-	100	-	ns
		Inductive load switching	T _j =25°C	-	42.9	-	
Eon	Turn-on power dissipation	operation	T _j =150°C	-	35.8	-	mJ
		7	T _j =25°C	-	50.8	-	
E _{off}	Turn-off power dissipation		T _j =150°C	-	51.2	-	mJ
$R_{\text{th(j-f)}}$	FET Thermal Resistance	Junction to cooling fluid $\Delta V/\Delta t = 10 dm^3/min, \ T_f = 6. \label{eq:deltaV}$	5°C	-	0.078	-	K/W

PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module

Body Diode Electrical characteristics (T_j =25°C unless otherwise specified, chip)

Cl1	Item	Condition		Value			TT '
Symbol				Min.	Тур.	Max	Unit
V_{SD}	Body Diode Forward Voltage	$V_{GS} = -4V$	T _j =25°C	3.9	4.9	5.6	V
		I _{SD} =800A	T _j =175°C	3.1	4.2	5.2	
Т	Reverse recovery time	V _{DD} =600V	T _j =25°C	-	40	-	ns
Тп		$I_D = 800A$	T _j =150°C	-	57	-	
Qrr	Reverse recovery charge	$V_{GS} = +15/-4V$	T _j =25°C	-	2.83	-	C
		$R_{G(ON)} = R_{G(OFF)} = 5\Omega$	T _j =150°C	-	7.31	-	uC
Err	Diode switching power dissipation	Inductive load	T _j =25°C	-	0.57	-	mJ
		switching operation	T _j =150°C	-	1.81	-	

Test Conditions

Figure 3. Switching time measure circuit

Figure 4. Switching time definition

Figure 5. Switching power dissipation definition

