1200V/800A 3 Phase SiC MOSFET Module 1 # **Description** The PRXS02FB12HDB1 is a 3 Phase SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips for xEV or motor drives application. #### **Features** - □ Blocking voltage 1200V - \square R_{DS(on)} = 1.7m Ω (T_j = 25°C) - □ Arcbonding[™] technology - ☐ 175°C maximum junction temperature - ☐ Si₃N₄ AMB substrate - □ Direct Cooled Pin Fin Base Plate - ☐ Thermistor inside - □ Press FIT Contact Technology # **Applications** - □ xEV Applications - ☐ Motor Drives Figure 1. Out drawing & circuit diagram for PRXS02FB12HDB1 #### PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module ## **Physical Dimensions** Figure 2. Physical Dimensions #### PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module ## **Maximum Ratings** (T_i = 25°C unless otherwise specified) | Symbol | Parameter | Conditions | Ratings | Unit | | |------------------|-----------------------------|--------------------------------------|------------|------|--| | V_{DSS} | Drain-Source Voltage | G-S Short | 1200 | V | | | V _{GSS} | Gate-Source Voltage | D-S Short, AC frequency ≥1Hz, Note1 | -11V/+23V | V | | | I_{DS} | DC Continuous Drain Current | T _f =25°C | 685 | A | | | I _{DS} | DC Continuous Drain Current | T _f =65°C | 590 | A | | | I_{SD} | Source (Body Diode) Current | T _f =25°C, with ON signal | 685 | A | | | I_{SD} | Source (Body Diode) Current | T _f =65°C, with ON signal | 590 | A | | | I_{DP} | Drain Pulse Current, Peak | Less than 1ms, Note2 | 1600 | A | | | P_D | Maximum Power Dissipation | T_f =25°C | 1923 | W | | | T_{j} | junction temperature | - | -40 to 175 | °C | | | T_{stg} | Storage temperature | - | -40 to 125 | °C | | Note1: Recommended Operating Value: -4V/+15V, -5V/+18V Note2: Pulse width limited by maximum junction temperature # **Typical Current Output Ability** Condition: SPWM control, $V_{CC}=800V$, $R_{g(ON)}=R_{g(OFF)}=5\Omega$, $T_f=65^{\circ}C$, $T_{jmax}=175^{\circ}C$, PF=0.8, Modulation rate = 1 Note3: This graph is calculated value for reference based on the limitation of T_{jmax} =175°C. The actual current out ability depends on inverter electrical, thermal and mechanic design. Please confirm it in actual application system. #### PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module #### **Module** | Parameter Conditions | | Value | Unit | | |--|--|------------|------|--| | Isolation voltage | Main terminal to base plate, f =0Hz, t =1sec | 4.2 | kV | | | Material of module baseplate | - | Cu+Ni | - | | | Creepage distance | terminal to heatsink terminal to terminal | 9 | mm | | | Clearance | terminal to heatsink terminal to terminal | 4.5 | mm | | | Stray inductance module | $T_f = 65^{\circ}C$ | 8 | nН | | | Module lead resistance, terminals – chip | T _f =65°C | 0.2 | mΩ | | | Mounting torque for module mounting | Screw M4 baseplate to heatsink | 1.8 to 2.2 | Nm | | | Weight | - | 798 | g | | # **NTC characteristics** | | Parameter | | Value | | | | |---------------------|-------------------|---|-------|------|------|-----------| | Symbol | | Condition | Min. | Тур. | Max. | Unit | | R ₂₅ | Resistance | $T_c = 25^{\circ}C$ | - | 5 | - | $k\Omega$ | | ΔR/R | Deviation of R100 | $T_c = 100^{\circ}C, R_{100} = 493\Omega$ | 5 | - | 5 | % | | P ₂₅ | Power dissipation | T _c =25°C | - | - | 20 | mW | | B _{25/50} | B-value | R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))] | - | 3375 | - | K | | B _{25/80} | B-value | R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))] | - | 3411 | - | K | | B _{25/100} | B-value | R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))] | - | 3433 | - | K | #### PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module # **MOSFET Electrical characteristics** (T_j =25°C unless otherwise specified, chip) | Gl1 | T., | G 188 | G 11/1 | | Value | | | |---------------------------|---------------------------------|---|--|-------|-------|------|-----| | Symbol | Item Condition | | Min. | Тур. | Max | Unit | | | V _{(BR)DSS} | Drain-Source Breakdown Voltage | V _{GS} =0V, I _D =8mA | | 1200 | - | - | V | | I _{DSS} | Zero gate voltage drain current | V _{DS} =1200V, V _{GS} =0V | | - | - | 80 | μΑ | | $V_{GS(th)}$ | Gate-source threshold voltage | $I_D = 80 \text{mA}, V_{DS} = V_{GS}$ | | 2.1 | - | 5.8 | V | | I_{GSS} | Gate-Source Leakage Current | $V_{GS} = 20V, V_{DS} = 0V, T_j = 25$ | 5°C | - | - | 10 | μΑ | | R _{DS(on)} | Static drain-source | I _D =800A | T _j =25°C | 1.1 | 1.7 | 2.3 | mΩ | | (Chip) | On-state resistance | $V_{GS} = 18V$ | T _j =175°C | 2.6 | 4.0 | 5.4 | mΩ | | V _{DS(on)} | Static drain-source | I _D =800A | T _j =25°C | - | 1.34 | 1.84 | V | | (Chip) | On-state voltage | $V_{GS} = 18V$ | T _j =175°C | - | 3.24 | 4.33 | V | | Ciss | Input capacitance | V _{DS} =850V | | - | 32 | - | nF | | Coss | Output capacitance | V _{GS} =0V | | - | 1.84 | - | nF | | Crss | Reverse transfer capacitance | f=1MHz | - | 0.176 | - | nF | | | Q _G | Total gate charge | V _{DD} =850V, I _D =800A, V _O | $V_{DD} = 850 V, I_D = 800 A, V_{GS} = -5/+18 V$ | | | - | nC | | | | | T _j =25°C | - | 160 | - | | | t _{d(on)} | Turn-on delay time | | T _j =150°C | - | 140 | - | ns | | | | V _{DD} =600V | T _j =25°C | - | 125 | - | | | $t_{\rm r}$ | Rise time | | T _j =150°C | - | 110 | - | ns | | | | $I_{\rm D} = 800 {\rm A}$ | T _j =25°C | - | 340 | - | | | $t_{d(off)}$ | Turn-off delay time | $V_{GS} = +15/-4V$ | T _j =150°C | - | 385 | - | ns | | | | $R_{G(ON)} = 5\Omega$ | T _j =25°C | - | 85 | - | | | \mathbf{t}_{f} | Fall time | $R_{G(OFF)} = 5\Omega$ | T _j =150°C | - | 100 | - | ns | | | | Inductive load switching | T _j =25°C | - | 42.9 | - | | | Eon | Turn-on power dissipation | operation | T _j =150°C | - | 35.8 | - | mJ | | | | 7 | T _j =25°C | - | 50.8 | - | | | E _{off} | Turn-off power dissipation | | T _j =150°C | - | 51.2 | - | mJ | | $R_{\text{th(j-f)}}$ | FET Thermal Resistance | Junction to cooling fluid $\Delta V/\Delta t = 10 dm^3/min, \ T_f = 6. \label{eq:deltaV}$ | 5°C | - | 0.078 | - | K/W | #### PRXS02FB12HDB1 1200V/800A 3 Phase SiC MOSFET Module # **Body Diode Electrical characteristics** (T_j =25°C unless otherwise specified, chip) | Cl1 | Item | Condition | | Value | | | TT ' | |-------------------|-----------------------------------|------------------------------------|-----------------------|-------|------|-----|------| | Symbol | | | | Min. | Тур. | Max | Unit | | V_{SD} | Body Diode Forward Voltage | $V_{GS} = -4V$ | T _j =25°C | 3.9 | 4.9 | 5.6 | V | | | | I _{SD} =800A | T _j =175°C | 3.1 | 4.2 | 5.2 | | | Т | Reverse recovery time | V _{DD} =600V | T _j =25°C | - | 40 | - | ns | | Тп | | $I_D = 800A$ | T _j =150°C | - | 57 | - | | | Qrr | Reverse recovery charge | $V_{GS} = +15/-4V$ | T _j =25°C | - | 2.83 | - | C | | | | $R_{G(ON)} = R_{G(OFF)} = 5\Omega$ | T _j =150°C | - | 7.31 | - | uC | | Err | Diode switching power dissipation | Inductive load | T _j =25°C | - | 0.57 | - | mJ | | | | switching operation | T _j =150°C | - | 1.81 | - | | # **Test Conditions** Figure 3. Switching time measure circuit Figure 4. Switching time definition Figure 5. Switching power dissipation definition