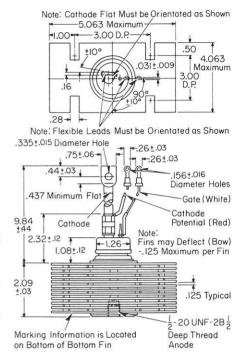

Westinghouse

Thyristor Silicon Controlled Rectifiers Westinghouse Type 2231* Type 2232*

Forward Current 475 Amps RMS 300 Amperes Half-Wave Average Forward Blocking Voltages to 1000 Volts


Application

Designed for fast switching applications, thyristor SCR Types 2231, 2232 with guaranteed t_{on} and t_{off} parameters, are especially suitable for inverters, dc choppers and controlled power systems where high inrush currents are encountered. The surge rating of 4,500 amperes combined with 84,000 amp² sec l²t rating allows optimum fuse coordination.

The exclusive Westinghouse CBE construction technique eliminates failures caused by thermal stresses by doing away with solder joints. In addition the entire series carries a guaranteed minimum dv/dt rating, and the Westinghouse Lifetime Guarantee.

♣ Westinghouse Lifetime Guarantee

Westinghouse warrants to the original purchaser that it will correct any defects in workmanship, by repair or replacement f.o.b. factory, for any silicon power semiconductor bearing this symbol *TM during the life of the equipment in which it is originally installed, provided said device is used within manufacturer's published ratings and applied in accordance with good engineering practice. This warranty shall constitute a fulfillment of all Westinghouse liabilities in respect to said products. This warranty is in lieu of all other warranties expressed or implied. Westinghouse shall not be liable for any consequential

Maximum Ratings and Characteristics

Blocking State ($T_J = 125^{\circ}C$) Symbol	Westinghouse Type: Max. Turn-off time: 2231 Series, 30 μsec; 2232 Series, 40 μsec										
	2231A 2232A	2231B 2232B	2231D 2232D	2231F 2232F	2231H 2232H	2231K 2232K	2231M 2232M	2231P 2232P	2231S 2232S	2232V	2232Z®
Repetitive Peak Forward and V _{FB} Reverse Voltage@, voltsV _{RB}	50	100	200	300	400	500	600	700	800	900	1000
Non-Repetitive Transient Peak Forward and Reverse Voltage, volts \leq 5.0 msec V_{RBT} Peak Forward and Reverse I_{FB}	150	200	300	400	500	600	700	800	900	1000	1100
Leakage Current, mA I _{RB}			-	L s	I	15	1		1	1	
Conducting State (T _J =125°C)	Symbol	All Type	s G	ate Par	ameters	$T_J=2$	5°C)	S	Symbol	All	Types

Peak Forward and Reverse In Leakage Current, mA In	FB RB ◀	
Conducting State (T _J =125°C)	Symbol	All Types
RMS Forward Current, amps	I _{RMS}	475
Ave. Forward Current (180° Condu	IC-	
tion) amps	I _{AVE}	300
Surge Current (at 60 Hz): ½ Cycle,	amps I _{FM}	4500
3 Cycles,	amps. I _{FM}	3200
10 Cycles,	amps. I _{FM}	2800
I2t for Fusing (at 60 Hz half-wave)		
amps² sec	l²t	84,000
Forward Voltage Drop at TJ=25°C		
I _F =100 Adc, volts		1.35
I _F =625 Adc, volts		1.85
Thermal Characteristics		
Oper. Junction Temp. Range, °C	TJ	-40 to +125
Storage Temperature Range, °C Thermal Impedance, °C/Watt:	T _{stg}	-40 to +150
Junction to Ambient	θ	0.18

② Applies for zero or negative gate voltage.③ For higher voltages refer to Westinghouse.

date rarameters (1) 20 0)	0,111001	/ [
Gate Current to Trigger (V _{FB} =12V), ma.	I _{GT}	300
Gate Voltage to Trigger (VFB=12V), volts.	V_{GT}	4
Non-Triggering Gate Voltage at T _J =		
125°C (Rated V _{FB}), volts	V_{GNT}	0.15
Peak Forward Gate Current, amps		4
Peak Reverse Gate Voltage, volts	V_{GRM}	15
Peak Gate Power, watts	P_{GM}	16
Average Gate Power, watts	$P_{G(AV)}$	3
Switching State	90 S	
Max. Turn-On Time, I _F =100 A, 10-90%	t _{on(2231)}	4.0
$V_{FD}=10 \text{ volts} \oplus$, $T_J=25^{\circ}\text{C}$, $\mu\text{sec} \dots$		8.0
Min. di/dt, Linear to 0.1 IFM(surge) 4	13 51	
amps/µsec	di/dt	75
Max. Turn-Off Time, $I_F = 250 A$, $T_J =$		
125° C, di _R /dt= 50 A/ μ sec., dv/dt=	t _{off} (2231)	30
20V/μsec Linear to .8 V _{FB} , μsec	t _{off} (2232)	40
Min. dv/dt, Exp. to .8 V _{FB} , volts/μsec,		
T _J =125°C	. dv/dt	100
With recommended gate drive. See AD 54-560.	8	

March, 1968 New Information E, D, C/2115/DB; E, D, C/2117

Thyristor Silicon Controlled Rectifiers Westinghouse Type 2231 Type 2232

Forward Current 475 Amps RMS 300 Amperes Half-Wave Average Forward Blocking Voltages to 1000 Volts

Electrical Characteristics - Air Flow, 1500 LFM

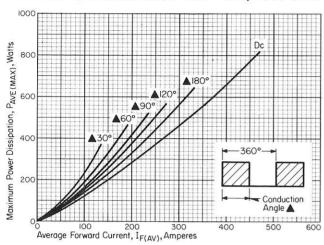


Figure 1. Power dissipation vs forward current, rectangular wave.

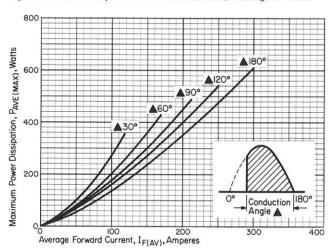


Figure 3. Power dissipation vs forward current, half-wave sinusoid.

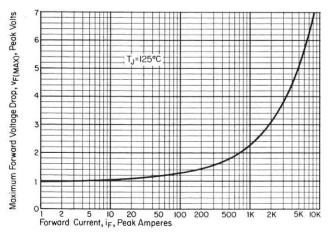


Figure 5. Forward voltage vs forward current.

Westinghouse Electric Corporation Semiconductor Division, Youngwood, Pa. 15697 Printed in USA

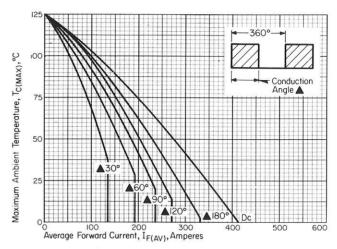


Figure 2. Ambient temperature vs forward current, rectangular wave.

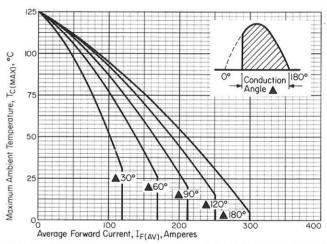


Figure 4. Ambient temperature vs forward current, half-wave sinusoid.

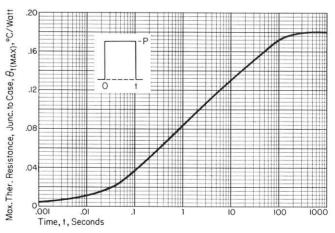


Figure 6. Transient thermal impedance vs time.