

1200V/600A Half Bridge SiC MOSFET Module

Description

The PRXS600HF12I4C1 is a Half Bridge SiC MOSFET Power Module. It integrates high performance SiC MOSFET chips designed for the applications such as Motor drives and Renewable energy.

Features

- □ Blocking voltage 1200V
- \Box R_{DS(on)} = 3.2m Ω
- □ Low thermal resistance with Si₃N₄ AMB
- □ 175°C maximum junction temperature
- ☐ Thermistor inside
- Low Switching Losses

Applications

- □ xEV Applications
- □ Motor Drives
- □ Vehicle Fast Chargers
- □ Smart-Grid/Grid-Tied Distributed Generation

Circuit Diagram

Figure 1. Out drawing & circuit diagram for PRXS600HF12I4C1

PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module

Pin Configuration and Marking Information

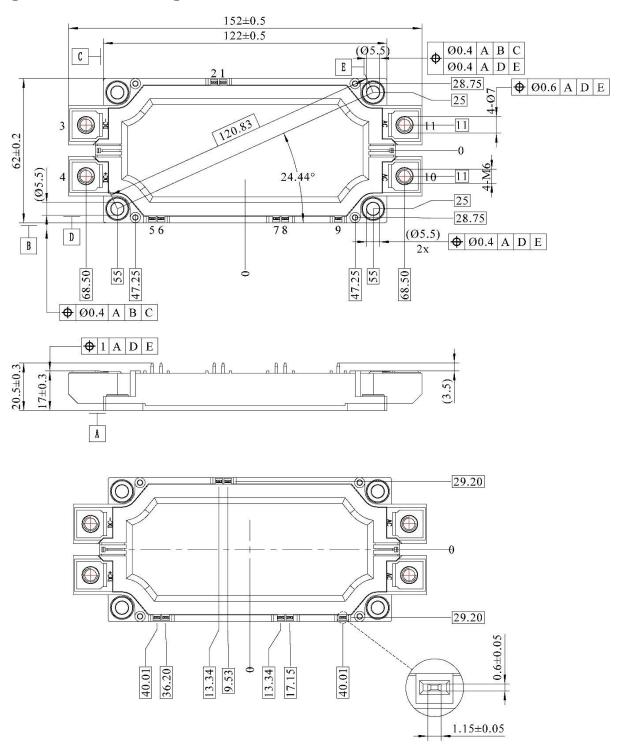


Figure 2. Pin configuration

PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module

Module

Parameter	Condition	Value	Unit
Isolation Voltage	RMS, f =50Hz, t =1min	3.4	KV
Material of module baseplate	-	Cu	-
Creepage distance	terminal to heatsink terminal to terminal	14.5 13	mm
Clearance	terminal to heatsink terminal to terminal	12.5 10	mm
CTI	-	>400	-
Module lead resistance, terminals-chip	T _C =25°C	0.5	mΩ
Mounting torque for module mounting	M5, M6	3 to 6	Nm
Weight	-	340	g

Maximum Ratings ($T_j = 25$ °C unless otherwise specified)

Symbol	Parameter	Condition	Ratings	Unit
V _{DSS}	Drain-Source Voltage	G-S Short	1200	V
V _{GSS}	Gate-Source Voltage	D-S Short, AC frequency ≥1Hz, Note1	-10 to 22	V
I_{DS}	DC Continuous Drain Current	$T_{\rm C} = 25^{\circ}{\rm C}, V_{\rm GS} = 18{\rm V}$	710	A
I_{DS}	DC Continuous Drain Current	$T_{\rm C} = 60^{\circ} \text{C}, V_{\rm GS} = 18 \text{V}$	620	A
I_{SD}	Source (Body diode) Current	T _C =25°C, with ON signal	710	A
I_{SD}	Source (Body diode) Current	T_C =60°C, with ON signal	620	A
I _{DSM}	Pulse Forward Current	$T_C = 25$ °C, Pulse width =1ms, $V_{GS} = 20$ V, Note2	1200	A
P _{tot}	Total Power Dissipation	T _C =25°C	2250	W
T_{jmax}	Max Junction Temperature	-	175	°C
T _{stg}	Storage Temperature	-	-40 to 125	°C

Note1: Recommended Operating Value, +18V/-5V, +18V/-4V, +15V/-4V

Note2: Pulse width limited by maximum junction temperature

NTC characteristics

Symbol Parameter	Donomoton	C 1:4:	Value			Unit
	Condition	Min.	Тур.	Max.	Unit	
R ₂₅	Resistance	$T_C=25$ °C	-	5	-	$k\Omega$
ΔR/R	Deviation of R ₁₀₀	$T_C = 100$ °C, $R_{100} = 493\Omega$	-5	1	5	%
P ₂₅	Power dissipation	$T_C=25$ °C	1	1	20	mW
B _{25/50}	B-value	R2 =R25 exp [B _{25/50} (1/T2 - 1/(298,15 K))]	1	3375	1	K
B _{25/80}	B-value	R2 =R25 exp [B _{25/80} (1/T2 - 1/(298,15 K))]	1	3411	1	K
B _{25/100}	B-value	R2 =R25 exp [B _{25/100} (1/T2 - 1/(298,15 K))]	-	3433	-	K

PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module

MOSFET Electrical characteristics (T_j =25°C unless otherwise specified, chip)

G 1 1	T.	Condition $V_{GS} = 0V, I_D = 600 \mu A$ $V_{DS} = 1200V, V_{GS} = 0V$			Value			T T •
Symbol	Item				Min.	Тур.	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage				1200	-	-	V
I_{DSS}	Zero gate voltage drain Current				-	20	-	μΔ
**		I _D =210mA	T _j =25°C	C	1.8	2.7	-	V
$V_{\text{GS(th)}}$	Gate-source threshold Voltage	$V_{DS} = V_{GS}$	$T_{j} = 175^{\circ}$	PC	-	2.1	-	V
I_{GSS}	Gate-Source Leakage Current	$V_{GS} = 20V, V_{DS} = 0V, T_{j}$	=25°C		-	-	600	n/
		I _D =600A	T _j =25°C	2	-	3.6	5.0	m
D (CILL)	Static drain-source	$V_{GS} = +15V$	$T_{j} = 175^{\circ}$	PC	-	5.2	-	m
$R_{DS(on)}(Chip)$	On-state resistance	I _D =600A	T _j =25°C	2	-	3.2	-	m
		$V_{GS} = +18V$	$T_{j} = 175^{\circ}$	PC	-	4.4	-	m
		I _D =600A	T _j =25°C	2	-	2.16	3.0	7
(01.)	Static drain-source	$V_{GS} = +15V$	$T_{j} = 175^{\circ}$	PC	-	3.12	-	7
V _{DS(on)} (Chip)	Chip) On-state Voltage $I_{D} = 600A V_{GS} = +18V$	I _D =600A	T _j =25°C	2	-	1.92	-	7
		$V_{GS} = +18V$	$T_{j} = 175^{\circ}$	PC	-	2.64	-	,
C _{iss}	Input Capacitance		•		-	34.8	-	n
C _{oss}	Output Capacitance	$V_D = 1000V, V_{GS} = 0V$ f = 200kHz, $V_{AC} = 25$ mV	<i>I</i>		-	1.06	-	n
C_{rss}	Reverse transfer Capacitance	1 –200KHz, V _{AC} –25HIV	,		-	0.086	-	n
R_{Gint}	Internal gate resistor	-			-	1.1	-	
Q_G	Total gate charge	V _{DD} =800V, I _D =360A, V _{GS} =+18/-5V			-	1240	-	n
	m 11 d			T _j =25°C	-	49	-	
$t_{d(on)}$	Turn-on delay time			T _j =150°C	-	46	-	ľ
	D' d'			T _j =25°C	-	30	-	
t_r	Rise time			T _j =150°C	-	24	-	ľ
	T	V _{DD} =600V		T _j =25°C	-	112	-	
$t_{d(off)}$	Turn-off delay time	$I_D = 600A$ $V_{GS} = +18/-4V$		T _j =150°C	-	123	-	r
	Fall time	$\begin{array}{c} R_{gon}/R_{goff} = 5.1/3.3\Omega \\ \text{Inductive load switching} \\ \text{operation} \end{array}$		T _j =25°C	-	17	-	ns
t_{f}				T _j =150°C	-	41	-	
E _{on} Turn-on power dissip	T 1' ' '			T _j =25°C	-	28.8	-	
	i urn-on power dissipation			T _j =150°C	-	26.8	-	n
	T 15	1		T _j =25°C	-	12.4	-	
$E_{ m off}$	Turn-off power dissipation			T _j =150°C	-	13.8	-	n
R _{th(j-c)}	FET Thermal Resistance	Junction to Case			-	0.066	-	K/
R _{th(c-f)}	Contact thermal Resistance	With thermal conductiv	e grease, N	ote3	-	0.015	-	K/

Note3: Assumes Thermal Conductivity of grease is 0.9W/m·K and thickness is 50um.

PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module

Body Diode Electrical characteristics $(T_j = 25^{\circ}C \text{ unless otherwise specified, chip})$

Ck al	Itom	Condition		Value			TT . *4
Symbol	Item			Min.	Тур.	Max	Unit
V	V _{SD} Body Diode Forward Voltage	$V_{GS} = -5V$ $I_{SD} = 600A$	T _j =25°C	-	6.3	-	V
\mathbf{v}_{SD}			T _j =175°C	-	5.6	-	
Т	T _{rr} Reverse recovery time	V _{DD} =600V	T _j =25°C	-	26	-	ns
1 _m			T _j =150°C	-	49	-	
0		$I_D = 600A$ $V_{GS} = +18/-4V$	T _j =25°C	-	2.3	-	C
Q _{rr} Reverse recovery charge	$R_{gon}/R_{goff} = 5.1/3.3\Omega$ Inductive load	T _j =150°C	-	9.6	-	uC	
E _{rr}	Diode switching power dissipation	switching operation	T _j =25°C	-	1.15	-	mJ
			T _j =150°C	-	4.12	-	

Test Conditions

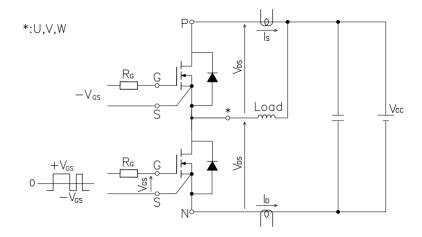


Figure 3. Switching time measure circuit

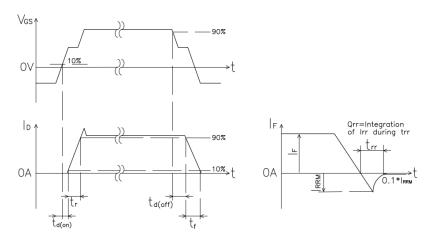
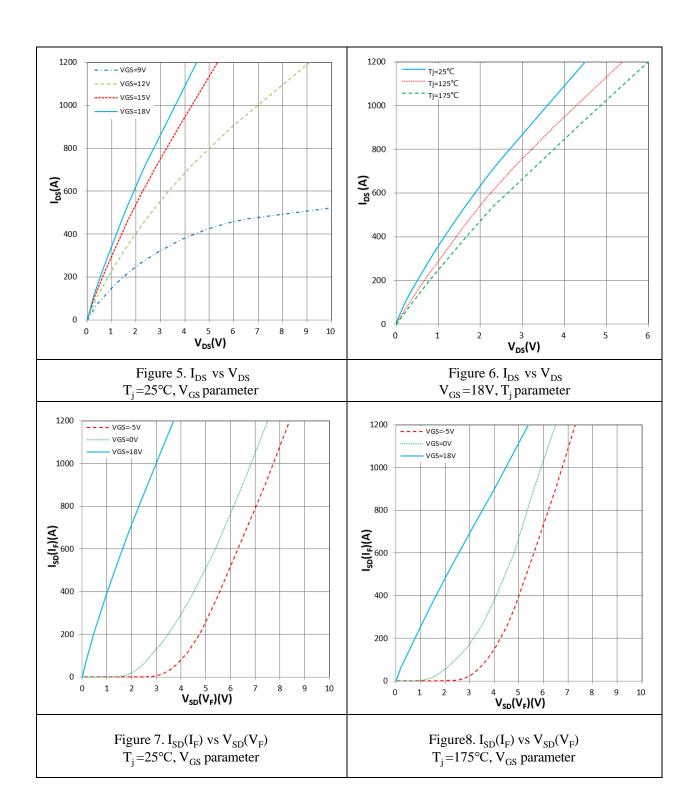
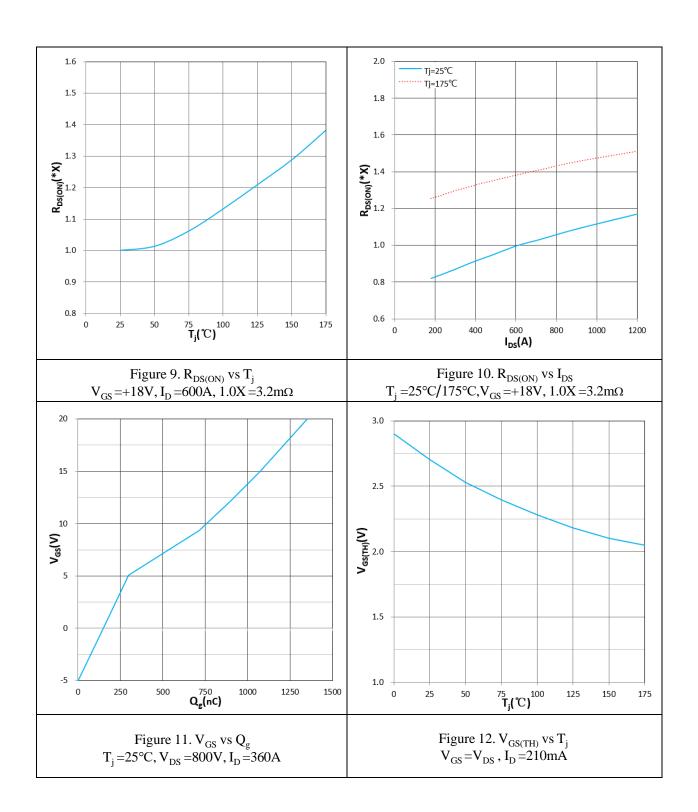
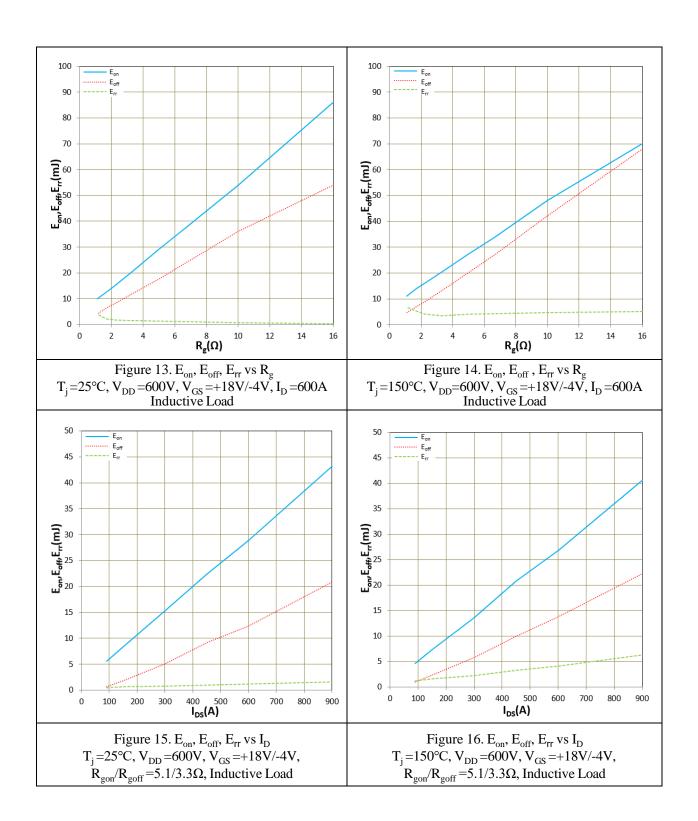



Figure 4. Switching time definition



PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module



PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module

PRXS600HF12I4C1 1200V/600A Half Bridge SiC MOSFET Module

